Cargando…
Single Shot Corrective CNN for Anatomically Correct 3D Hand Pose Estimation
Hand pose estimation in 3D from depth images is a highly complex task. Current state-of-the-art 3D hand pose estimators focus only on the accuracy of the model as measured by how closely it matches the ground truth hand pose but overlook the resulting hand pose's anatomical correctness. In this...
Autores principales: | Isaac, Joseph H. R., Manivannan, Muniyandi, Ravindran, Balaraman |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8899709/ https://www.ncbi.nlm.nih.gov/pubmed/35265829 http://dx.doi.org/10.3389/frai.2022.759255 |
Ejemplares similares
-
Interpretability With Accurate Small Models
por: Ghose, Abhishek, et al.
Publicado: (2020) -
ResMem-Net: memory based deep CNN for image memorability estimation
por: Praveen, Arockia, et al.
Publicado: (2021) -
eGAC3D: enhancing depth adaptive convolution and depth estimation for monocular 3D object pose detection
por: Ngo, Duc Tuan, et al.
Publicado: (2022) -
Specific challenges posed by artificial intelligence in research ethics
por: Bouhouita-Guermech, Sarah, et al.
Publicado: (2023) -
Zero-shot stance detection: Paradigms and challenges
por: Allaway, Emily, et al.
Publicado: (2023)