Cargando…
Determining the anatomical site in knee radiographs using deep learning
An important quality criterion for radiographs is the correct anatomical side marking. A deep neural network is evaluated to predict the correct anatomical side in radiographs of the knee acquired in anterior–posterior direction. In this retrospective study, a ResNet-34 network was trained on 2892 r...
Autores principales: | Quinsten, Anton S., Umutlu, Lale, Forsting, Michael, Nassenstein, Kai, Demircioğlu, Aydin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900105/ https://www.ncbi.nlm.nih.gov/pubmed/35256736 http://dx.doi.org/10.1038/s41598-022-08020-7 |
Ejemplares similares
-
Pediatric age estimation from radiographs of the knee using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2022) -
Determining body height and weight from thoracic and abdominal CT localizers in pediatric and young adult patients using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2023) -
Detecting the pulmonary trunk in CT scout views using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2021) -
Pediatric age estimation from thoracic and abdominal CT scout views using deep learning
por: Demircioğlu, Aydin, et al.
Publicado: (2023) -
Generating Virtual Short Tau Inversion Recovery (STIR) Images from T1- and T2-Weighted Images Using a Conditional Generative Adversarial Network in Spine Imaging
por: Haubold, Johannes, et al.
Publicado: (2021)