Cargando…

Disclosing the Role of C4-Oxo Substitution in the Photochemistry of DNA and RNA Pyrimidine Monomers: Formation of Photoproducts from the Vibrationally Excited Ground State

[Image: see text] Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure on early Earth, the investigation of the photophysics of modified nucleo...

Descripción completa

Detalles Bibliográficos
Autores principales: Vos, Eva, Hoehn, Sean J., Krul, Sarah E., Crespo-Hernández, Carlos E., González-Vázquez, Jesús, Corral, Inés
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900130/
https://www.ncbi.nlm.nih.gov/pubmed/35191712
http://dx.doi.org/10.1021/acs.jpclett.2c00052
Descripción
Sumario:[Image: see text] Oxo and amino substituted purines and pyrimidines have been suggested as protonucleobases participating in ancient pre-RNA forms. Considering electromagnetic radiation as a key environmental selection pressure on early Earth, the investigation of the photophysics of modified nucleobases is crucial to determine their viability as nucleobases’ ancestors and to understand the factors that rule the photostability of natural nucleobases. In this Letter, we combine femtosecond transient absorption spectroscopy and quantum mechanical simulations to reveal the photochemistry of 4-pyrimidinone, a close relative of uracil. Irradiation of 4-pyrimidinone with ultraviolet radiation populates the S(1)(ππ*) state, which decays to the vibrationally excited ground state in a few hundred femtoseconds. Analysis of the postirradiated sample in water reveals the formation of a 6-hydroxy-5H-photohydrate and 3-(N-(iminomethyl)imino)propanoic acid as the primary photoproducts. 3-(N-(Iminomethyl)imino)propanoic acid originates from the hydrolysis of an unstable ketene species generated from the C4–N3 photofragmentation of the pyrimidine core.