Cargando…

Fragmentation and Ionization Efficiency of Positional and Functional Isomers of Paeoniflorin Derivatives in Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry

Paeoniflorin and albiflorin, which are functional isomers, are the major constituents of an herbal medicine derived from Paeonia lactiflora. Those functional isomers and their galloylated derivatives, which are positional isomers, were studied by matrix-assisted laser desorption/ionization–tandem ma...

Descripción completa

Detalles Bibliográficos
Autores principales: Yamagaki, Tohru, Sugahara, Kohtaro, Fujikawa, Kohki, Washida, Kazuto
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Mass Spectrometry Society of Japan 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900252/
https://www.ncbi.nlm.nih.gov/pubmed/35291502
http://dx.doi.org/10.5702/massspectrometry.A0101
Descripción
Sumario:Paeoniflorin and albiflorin, which are functional isomers, are the major constituents of an herbal medicine derived from Paeonia lactiflora. Those functional isomers and their galloylated derivatives, which are positional isomers, were studied by matrix-assisted laser desorption/ionization–tandem mass spectrometry (MALDI-MS/MS). The resulting mass spectra are discussed based on the fragmentation patterns of the sodium adducts. The product ion spectra of 4-O-galloylalbiflorin and 4′-O-galloylpaeoniflorin differed, even though they were positional isomers. The fragmentations of the ester parts were influenced by the neighboring hydroxyl groups. The ionization efficiency of the sodium adduct of albiflorin was higher than that for paeoniflorin. These results indicate that the carboxylic ester group has a higher affinity for sodium ions than the acetal group, which can be attributed to the carbonyl oxygen being negatively polarized, allowing it to function as a Lewis base.