Cargando…
Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing
As a part of our study of the syntheses of aryl amides, the crystal structures of two benzamides were determined from single-crystal X-ray data at 173 K. Both crystal structures contain molecular units as asymmetric units with no solvent in the unit cells. Crystal structure I, TFMP, is the result o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900516/ https://www.ncbi.nlm.nih.gov/pubmed/35371548 http://dx.doi.org/10.1107/S2056989022000950 |
_version_ | 1784664137909927936 |
---|---|
author | Pearson, Wayne H. Urban, Joseph J. MacArthur, Amy H. Roy Lin, Shirley Cabrera, Dylan W. L. |
author_facet | Pearson, Wayne H. Urban, Joseph J. MacArthur, Amy H. Roy Lin, Shirley Cabrera, Dylan W. L. |
author_sort | Pearson, Wayne H. |
collection | PubMed |
description | As a part of our study of the syntheses of aryl amides, the crystal structures of two benzamides were determined from single-crystal X-ray data at 173 K. Both crystal structures contain molecular units as asymmetric units with no solvent in the unit cells. Crystal structure I, TFMP, is the result of the crystallization of N-[4-(trifluoromethyl)phenyl]benzamide, C(14)H(10)F(3)NO. Crystal structure II, MOP, is composed of N-(4-methoxyphenyl)benzamide, C(14)H(13)NO(2), units. TFMP is triclinic, space group P [Image: see text] , consisting of two molecules in the unit cell related by the center of symmetry. MOP is monoclinic, space group P2(1)/c, consisting of four molecules in the unit cell. Both types of molecules contain three planar regions; a phenyl ring, an amide planar region, and a para-substituted phenyl ring. The orientations of these planar regions within the asymmetric units are compared to their predicted orientations, in isolation, from DFT calculations. The aryl rings are tilted approximately 60° with respect to each other in both experimentally determined structures, as compared to 30° in the DFT results. These conformational changes result in more favorable environments for N—H⋯O hydrogen bonding and aryl ring π-stacking in the crystal structures. Intermolecular interactions were examined by Hirshfeld surface analysis and quantified by calculating molecular interaction energies. The results of this study demonstrate that both hydrogen bonding and dispersion are essential to the side-by-side stacking of molecular units in these crystal structures. Weaker dispersion interactions along the axial directions of the molecules reveal insight into the melting mechanisms of these crystals. |
format | Online Article Text |
id | pubmed-8900516 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-89005162022-03-31 Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing Pearson, Wayne H. Urban, Joseph J. MacArthur, Amy H. Roy Lin, Shirley Cabrera, Dylan W. L. Acta Crystallogr E Crystallogr Commun Research Communications As a part of our study of the syntheses of aryl amides, the crystal structures of two benzamides were determined from single-crystal X-ray data at 173 K. Both crystal structures contain molecular units as asymmetric units with no solvent in the unit cells. Crystal structure I, TFMP, is the result of the crystallization of N-[4-(trifluoromethyl)phenyl]benzamide, C(14)H(10)F(3)NO. Crystal structure II, MOP, is composed of N-(4-methoxyphenyl)benzamide, C(14)H(13)NO(2), units. TFMP is triclinic, space group P [Image: see text] , consisting of two molecules in the unit cell related by the center of symmetry. MOP is monoclinic, space group P2(1)/c, consisting of four molecules in the unit cell. Both types of molecules contain three planar regions; a phenyl ring, an amide planar region, and a para-substituted phenyl ring. The orientations of these planar regions within the asymmetric units are compared to their predicted orientations, in isolation, from DFT calculations. The aryl rings are tilted approximately 60° with respect to each other in both experimentally determined structures, as compared to 30° in the DFT results. These conformational changes result in more favorable environments for N—H⋯O hydrogen bonding and aryl ring π-stacking in the crystal structures. Intermolecular interactions were examined by Hirshfeld surface analysis and quantified by calculating molecular interaction energies. The results of this study demonstrate that both hydrogen bonding and dispersion are essential to the side-by-side stacking of molecular units in these crystal structures. Weaker dispersion interactions along the axial directions of the molecules reveal insight into the melting mechanisms of these crystals. International Union of Crystallography 2022-02-08 /pmc/articles/PMC8900516/ /pubmed/35371548 http://dx.doi.org/10.1107/S2056989022000950 Text en © Pearson et al. 2022 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Research Communications Pearson, Wayne H. Urban, Joseph J. MacArthur, Amy H. Roy Lin, Shirley Cabrera, Dylan W. L. Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title | Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title_full | Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title_fullStr | Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title_full_unstemmed | Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title_short | Crystal structures of N-[4-(trifluoromethyl)phenyl]benzamide and N-(4-methoxyphenyl)benzamide at 173 K: a study of the energetics of conformational changes due to crystal packing |
title_sort | crystal structures of n-[4-(trifluoromethyl)phenyl]benzamide and n-(4-methoxyphenyl)benzamide at 173 k: a study of the energetics of conformational changes due to crystal packing |
topic | Research Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900516/ https://www.ncbi.nlm.nih.gov/pubmed/35371548 http://dx.doi.org/10.1107/S2056989022000950 |
work_keys_str_mv | AT pearsonwayneh crystalstructuresofn4trifluoromethylphenylbenzamideandn4methoxyphenylbenzamideat173kastudyoftheenergeticsofconformationalchangesduetocrystalpacking AT urbanjosephj crystalstructuresofn4trifluoromethylphenylbenzamideandn4methoxyphenylbenzamideat173kastudyoftheenergeticsofconformationalchangesduetocrystalpacking AT macarthuramyhroy crystalstructuresofn4trifluoromethylphenylbenzamideandn4methoxyphenylbenzamideat173kastudyoftheenergeticsofconformationalchangesduetocrystalpacking AT linshirley crystalstructuresofn4trifluoromethylphenylbenzamideandn4methoxyphenylbenzamideat173kastudyoftheenergeticsofconformationalchangesduetocrystalpacking AT cabreradylanwl crystalstructuresofn4trifluoromethylphenylbenzamideandn4methoxyphenylbenzamideat173kastudyoftheenergeticsofconformationalchangesduetocrystalpacking |