Cargando…
SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles
Stable actinide colloids and nanoparticles are of interest because of their potential to affect the transportation of radionuclides in the near-field of a nuclear waste repository. At high concentrations, thorium(IV) can precipitate to form intrinsic colloids. In the present study, polynuclear thori...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
International Union of Crystallography
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900854/ https://www.ncbi.nlm.nih.gov/pubmed/35254289 http://dx.doi.org/10.1107/S1600577521012923 |
_version_ | 1784664219275231232 |
---|---|
author | Zhai, Baihui Tian, Qiang Li, Na Yan, Minhao Henderson, Mark J. |
author_facet | Zhai, Baihui Tian, Qiang Li, Na Yan, Minhao Henderson, Mark J. |
author_sort | Zhai, Baihui |
collection | PubMed |
description | Stable actinide colloids and nanoparticles are of interest because of their potential to affect the transportation of radionuclides in the near-field of a nuclear waste repository. At high concentrations, thorium(IV) can precipitate to form intrinsic colloids. In the present study, polynuclear thorium colloids and thorium dioxide crystallites, formed by the condensation of hydrolyzed Th(4+) solutions (3 mM; initial pH 5.5) aged for up to 18 months, were studied using small-angle X-ray scattering. Scattering profiles were fitted using a unified Guinier/power-law model (Beaucage model) to extract the radii of gyration and Porod exponents. Analysis of the scattering profiles from a dispersion aged for 5 months indicated that both polymer coils and more compacted structures (radius of gyration R (g) ≃ 10 nm) were present, which translated in the Kratky plots as a plateau and a peak maximum, respectively. After 18 months, the SAXS data were consistent with the presence of agglomerates of ThO(2) particles suspended in aqueous solution (pH 3.2; [Th] = 1.45 mM). The measured radius of gyration (R (g)) of the agglomerates was 5.8 nm, whereas the radius of the ThO(2) particles was 2.5 nm. |
format | Online Article Text |
id | pubmed-8900854 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | International Union of Crystallography |
record_format | MEDLINE/PubMed |
spelling | pubmed-89008542022-03-29 SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles Zhai, Baihui Tian, Qiang Li, Na Yan, Minhao Henderson, Mark J. J Synchrotron Radiat Actinide Physics and Chemistry Stable actinide colloids and nanoparticles are of interest because of their potential to affect the transportation of radionuclides in the near-field of a nuclear waste repository. At high concentrations, thorium(IV) can precipitate to form intrinsic colloids. In the present study, polynuclear thorium colloids and thorium dioxide crystallites, formed by the condensation of hydrolyzed Th(4+) solutions (3 mM; initial pH 5.5) aged for up to 18 months, were studied using small-angle X-ray scattering. Scattering profiles were fitted using a unified Guinier/power-law model (Beaucage model) to extract the radii of gyration and Porod exponents. Analysis of the scattering profiles from a dispersion aged for 5 months indicated that both polymer coils and more compacted structures (radius of gyration R (g) ≃ 10 nm) were present, which translated in the Kratky plots as a plateau and a peak maximum, respectively. After 18 months, the SAXS data were consistent with the presence of agglomerates of ThO(2) particles suspended in aqueous solution (pH 3.2; [Th] = 1.45 mM). The measured radius of gyration (R (g)) of the agglomerates was 5.8 nm, whereas the radius of the ThO(2) particles was 2.5 nm. International Union of Crystallography 2022-01-18 /pmc/articles/PMC8900854/ /pubmed/35254289 http://dx.doi.org/10.1107/S1600577521012923 Text en © Baihui Zhai et al. 2022 https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited. |
spellingShingle | Actinide Physics and Chemistry Zhai, Baihui Tian, Qiang Li, Na Yan, Minhao Henderson, Mark J. SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title | SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title_full | SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title_fullStr | SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title_full_unstemmed | SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title_short | SAXS study of the formation and structure of polynuclear thorium(IV) colloids and thorium dioxide nanoparticles |
title_sort | saxs study of the formation and structure of polynuclear thorium(iv) colloids and thorium dioxide nanoparticles |
topic | Actinide Physics and Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8900854/ https://www.ncbi.nlm.nih.gov/pubmed/35254289 http://dx.doi.org/10.1107/S1600577521012923 |
work_keys_str_mv | AT zhaibaihui saxsstudyoftheformationandstructureofpolynuclearthoriumivcolloidsandthoriumdioxidenanoparticles AT tianqiang saxsstudyoftheformationandstructureofpolynuclearthoriumivcolloidsandthoriumdioxidenanoparticles AT lina saxsstudyoftheformationandstructureofpolynuclearthoriumivcolloidsandthoriumdioxidenanoparticles AT yanminhao saxsstudyoftheformationandstructureofpolynuclearthoriumivcolloidsandthoriumdioxidenanoparticles AT hendersonmarkj saxsstudyoftheformationandstructureofpolynuclearthoriumivcolloidsandthoriumdioxidenanoparticles |