Cargando…

Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data

Goal: Continuous glucose monitoring (CGM) is commonly used in Type 1 diabetes management by clinicians and patients and in diabetes research to understand how factors of longitudinal glucose and glucose variability relate to disease onset and severity and the efficacy of interventions. CGM data pres...

Descripción completa

Detalles Bibliográficos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: IEEE 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901031/
https://www.ncbi.nlm.nih.gov/pubmed/35402978
http://dx.doi.org/10.1109/OJEMB.2021.3105816
_version_ 1784664258472050688
collection PubMed
description Goal: Continuous glucose monitoring (CGM) is commonly used in Type 1 diabetes management by clinicians and patients and in diabetes research to understand how factors of longitudinal glucose and glucose variability relate to disease onset and severity and the efficacy of interventions. CGM data presents unique bioinformatic challenges because the data is longitudinal, temporal, and there are infinite ways to summarize and use this data. There are over 25 metrics of glucose variability used clinically and in research, metrics are not standardized, and little validation exists across studies. The primary goal of this work is to present a software resource for systematic, reproducible, and comprehensive analysis of interstitial glucose and glycemic variability from continuous glucose monitor data. Methods: Comprehensive literature review informed the clinically-validated functions developed in this work. Software packages were developed and open-sourced through the Python Package Index (PyPi) and the Comprehensive R Archive Network (CRAN). cgmquantify is integrated into the Digital Biomarker Discovery Pipeline and MD2K Cerebral Cortex. Results: Here we present an open-source software toolbox called cgmquantify, which contains 25 functions calculating 28 clinically validated metrics of glucose and glycemic variability, as well as tools for visualizing longitudinal CGM data. Detailed documentation facilitates modification of existing code by the community for customization of input data and visualizations. Conclusions: We have built systematic functions and documentation of metrics and visualizations into a software resource available in both the Python and R languages. This resource will enable digital biomarker development using continuous glucose monitors.
format Online
Article
Text
id pubmed-8901031
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher IEEE
record_format MEDLINE/PubMed
spelling pubmed-89010312022-04-07 Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data IEEE Open J Eng Med Biol Article Goal: Continuous glucose monitoring (CGM) is commonly used in Type 1 diabetes management by clinicians and patients and in diabetes research to understand how factors of longitudinal glucose and glucose variability relate to disease onset and severity and the efficacy of interventions. CGM data presents unique bioinformatic challenges because the data is longitudinal, temporal, and there are infinite ways to summarize and use this data. There are over 25 metrics of glucose variability used clinically and in research, metrics are not standardized, and little validation exists across studies. The primary goal of this work is to present a software resource for systematic, reproducible, and comprehensive analysis of interstitial glucose and glycemic variability from continuous glucose monitor data. Methods: Comprehensive literature review informed the clinically-validated functions developed in this work. Software packages were developed and open-sourced through the Python Package Index (PyPi) and the Comprehensive R Archive Network (CRAN). cgmquantify is integrated into the Digital Biomarker Discovery Pipeline and MD2K Cerebral Cortex. Results: Here we present an open-source software toolbox called cgmquantify, which contains 25 functions calculating 28 clinically validated metrics of glucose and glycemic variability, as well as tools for visualizing longitudinal CGM data. Detailed documentation facilitates modification of existing code by the community for customization of input data and visualizations. Conclusions: We have built systematic functions and documentation of metrics and visualizations into a software resource available in both the Python and R languages. This resource will enable digital biomarker development using continuous glucose monitors. IEEE 2021-08-18 /pmc/articles/PMC8901031/ /pubmed/35402978 http://dx.doi.org/10.1109/OJEMB.2021.3105816 Text en https://creativecommons.org/licenses/by/4.0/This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
spellingShingle Article
Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title_full Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title_fullStr Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title_full_unstemmed Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title_short Cgmquantify: Python and R Software Packages for Comprehensive Analysis of Interstitial Glucose and Glycemic Variability from Continuous Glucose Monitor Data
title_sort cgmquantify: python and r software packages for comprehensive analysis of interstitial glucose and glycemic variability from continuous glucose monitor data
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901031/
https://www.ncbi.nlm.nih.gov/pubmed/35402978
http://dx.doi.org/10.1109/OJEMB.2021.3105816
work_keys_str_mv AT cgmquantifypythonandrsoftwarepackagesforcomprehensiveanalysisofinterstitialglucoseandglycemicvariabilityfromcontinuousglucosemonitordata
AT cgmquantifypythonandrsoftwarepackagesforcomprehensiveanalysisofinterstitialglucoseandglycemicvariabilityfromcontinuousglucosemonitordata
AT cgmquantifypythonandrsoftwarepackagesforcomprehensiveanalysisofinterstitialglucoseandglycemicvariabilityfromcontinuousglucosemonitordata