Cargando…

Predicting hospital readmission risk in patients with COVID-19: A machine learning approach

INTRODUCTION: The Coronavirus 2019 (COVID-19) epidemic stunned the health systems with severe scarcities in hospital resources. In this critical situation, decreasing COVID-19 readmissions could potentially sustain hospital capacity. This study aimed to select the most affecting features of COVID-19...

Descripción completa

Detalles Bibliográficos
Autores principales: Afrash, Mohammad Reza, Kazemi-Arpanahi, Hadi, Shanbehzadeh, Mostafa, Nopour, Raoof, Mirbagheri, Esmat
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Published by Elsevier Ltd. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901230/
https://www.ncbi.nlm.nih.gov/pubmed/35280933
http://dx.doi.org/10.1016/j.imu.2022.100908
Descripción
Sumario:INTRODUCTION: The Coronavirus 2019 (COVID-19) epidemic stunned the health systems with severe scarcities in hospital resources. In this critical situation, decreasing COVID-19 readmissions could potentially sustain hospital capacity. This study aimed to select the most affecting features of COVID-19 readmission and compare the capability of Machine Learning (ML) algorithms to predict COVID-19 readmission based on the selected features. MATERIAL AND METHODS: The data of 5791 hospitalized patients with COVID-19 were retrospectively recruited from a hospital registry system. The LASSO feature selection algorithm was used to select the most important features related to COVID-19 readmission. HistGradientBoosting classifier (HGB), Bagging classifier, Multi-Layered Perceptron (MLP), Support Vector Machine ((SVM) kernel = linear), SVM (kernel = RBF), and Extreme Gradient Boosting (XGBoost) classifiers were used for prediction. We evaluated the performance of ML algorithms with a 10-fold cross-validation method using six performance evaluation metrics. RESULTS: Out of the 42 features, 14 were identified as the most relevant predictors. The XGBoost classifier outperformed the other six ML models with an average accuracy of 91.7%, specificity of 91.3%, the sensitivity of 91.6%, F-measure of 91.8%, and AUC of 0.91%. CONCLUSION: The experimental results prove that ML models can satisfactorily predict COVID-19 readmission. Besides considering the risk factors prioritized in this work, categorizing cases with a high risk of reinfection can make the patient triaging procedure and hospital resource utilization more effective.