Cargando…
Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms
This study was aimed to discuss the feasibility of distinguishing benign and malignant breast tumors under the tomographic ultrasound imaging (TUI) of deep learning algorithm. The deep learning algorithm was used to segment the images, and 120 patients with breast tumor were included in this study,...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901319/ https://www.ncbi.nlm.nih.gov/pubmed/35265119 http://dx.doi.org/10.1155/2022/9227440 |
_version_ | 1784664339513344000 |
---|---|
author | Xiao, Xuehua Gan, Fengping Yu, Haixia |
author_facet | Xiao, Xuehua Gan, Fengping Yu, Haixia |
author_sort | Xiao, Xuehua |
collection | PubMed |
description | This study was aimed to discuss the feasibility of distinguishing benign and malignant breast tumors under the tomographic ultrasound imaging (TUI) of deep learning algorithm. The deep learning algorithm was used to segment the images, and 120 patients with breast tumor were included in this study, all of whom underwent routine ultrasound examinations. Subsequently, TUI was used to assist in guiding the positioning, and the light scattering tomography system was used to further measure the lesions. A deep learning model was established to process the imaging results, and the pathological test results were undertaken as the gold standard for the efficiency of different imaging methods to diagnose the breast tumors. The results showed that, among 120 patients with breast tumor, 56 were benign lesions and 64 were malignant lesions. The average total amount of hemoglobin (HBT) of malignant lesions was significantly higher than that of benign lesions (P < 0.05). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of TUI in the diagnosis of breast cancer were 90.4%, 75.6%, 81.4%, 84.7%, and 80.6%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of ultrasound in the diagnosis of breast cancer were 81.7%, 64.9%, 70.5%, 75.9%, and 80.6%, respectively. In addition, for suspected breast malignant lesions, the combined application of ultrasound and tomography can increase the diagnostic specificity to 82.1% and the accuracy to 83.8%. Based on the above results, it was concluded that TUI combined with ultrasound had a significant effect on benign and malignant diagnosis of breast cancer and can significantly improve the specificity and accuracy of diagnosis. It also reflected that deep learning technology had a good auxiliary role in the examination of diseases and was worth the promotion of clinical application. |
format | Online Article Text |
id | pubmed-8901319 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-89013192022-03-08 Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms Xiao, Xuehua Gan, Fengping Yu, Haixia Comput Intell Neurosci Research Article This study was aimed to discuss the feasibility of distinguishing benign and malignant breast tumors under the tomographic ultrasound imaging (TUI) of deep learning algorithm. The deep learning algorithm was used to segment the images, and 120 patients with breast tumor were included in this study, all of whom underwent routine ultrasound examinations. Subsequently, TUI was used to assist in guiding the positioning, and the light scattering tomography system was used to further measure the lesions. A deep learning model was established to process the imaging results, and the pathological test results were undertaken as the gold standard for the efficiency of different imaging methods to diagnose the breast tumors. The results showed that, among 120 patients with breast tumor, 56 were benign lesions and 64 were malignant lesions. The average total amount of hemoglobin (HBT) of malignant lesions was significantly higher than that of benign lesions (P < 0.05). The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of TUI in the diagnosis of breast cancer were 90.4%, 75.6%, 81.4%, 84.7%, and 80.6%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of ultrasound in the diagnosis of breast cancer were 81.7%, 64.9%, 70.5%, 75.9%, and 80.6%, respectively. In addition, for suspected breast malignant lesions, the combined application of ultrasound and tomography can increase the diagnostic specificity to 82.1% and the accuracy to 83.8%. Based on the above results, it was concluded that TUI combined with ultrasound had a significant effect on benign and malignant diagnosis of breast cancer and can significantly improve the specificity and accuracy of diagnosis. It also reflected that deep learning technology had a good auxiliary role in the examination of diseases and was worth the promotion of clinical application. Hindawi 2022-02-28 /pmc/articles/PMC8901319/ /pubmed/35265119 http://dx.doi.org/10.1155/2022/9227440 Text en Copyright © 2022 Xuehua Xiao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xiao, Xuehua Gan, Fengping Yu, Haixia Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title | Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title_full | Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title_fullStr | Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title_full_unstemmed | Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title_short | Tomographic Ultrasound Imaging in the Diagnosis of Breast Tumors under the Guidance of Deep Learning Algorithms |
title_sort | tomographic ultrasound imaging in the diagnosis of breast tumors under the guidance of deep learning algorithms |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901319/ https://www.ncbi.nlm.nih.gov/pubmed/35265119 http://dx.doi.org/10.1155/2022/9227440 |
work_keys_str_mv | AT xiaoxuehua tomographicultrasoundimaginginthediagnosisofbreasttumorsundertheguidanceofdeeplearningalgorithms AT ganfengping tomographicultrasoundimaginginthediagnosisofbreasttumorsundertheguidanceofdeeplearningalgorithms AT yuhaixia tomographicultrasoundimaginginthediagnosisofbreasttumorsundertheguidanceofdeeplearningalgorithms |