Cargando…
Cost of Goods Analysis Facilitates an Integrated Approach to Identifying Alternative Synthesis Methodologies for Lower Cost Manufacturing of the COVID-19 Antiviral Molnupiravir
Orally delivered drugs offer significant benefits in the fight against viral infections, and cost-effective production is critical to their impact on pandemic response in low- and middle-income countries. One example, molnupiravir, a COVID-19 therapy developed by Emory, Ridgeback, and Merck & Co...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
F1000 Research Limited
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901586/ https://www.ncbi.nlm.nih.gov/pubmed/35299948 http://dx.doi.org/10.12688/gatesopenres.13509.1 |
Sumario: | Orally delivered drugs offer significant benefits in the fight against viral infections, and cost-effective production is critical to their impact on pandemic response in low- and middle-income countries. One example, molnupiravir, a COVID-19 therapy developed by Emory, Ridgeback, and Merck & Co., had potential to benefit from significant cost of goods (COGs) reductions for its active pharmaceutical ingredient (API), including starting materials. A holistic approach to identifying, developing, and evaluating optimized synthetic routes, which includes detailed COGs modeling, provides a rapid means to increase the availability, uptake and application of molnupiravir and other antivirals in global markets. Identification and development of alternate processes for the synthesis of molnupiravir has been conducted by the Medicines for All Institute at Virginia Commonwealth University (M4ALL) and the Green and Turner Labs at the University of Manchester. Both groups developed innovative processes based on synthetic route design and biocatalysis aimed at lowering costs and improving global access. The authors then performed COGs modeling to assess cost saving opportunities. This included a focus on manufacturing environments and facilities amenable to global public health and the identification of key parameters using sensitivity analyses. While all of the evaluated routes provide efficiency benefits, the best options yielded 3-6 fold API COGs reductions leading to treatment COGs as low as <$3/regimen. Additionally, key starting materials and cost drivers were quantified to evaluate the robustness of the savings. Finally, COGs models can continue to inform the focus of future development efforts on the most promising routes for additional cost savings. While the full price of a treatment course includes other factors, these alternative API synthetic approaches have significant potential to help facilitate broader access in low- and middle-income countries. As other promising therapeutics are developed, a similar process could enable rapid cost reductions while enhancing global access. |
---|