Cargando…

Impact behaviour of 3D printed cellular structures for mouthguard applications

Ethylene-Vinyl Acetate (EVA) is the most popular material for manufacturing mouthguards. However, EVA mouthguards are problematic, for example inconsistent thicknesses across the mouthguard. Additive manufacturing provides a promising solution to this problem, as it can manufacture mouthguards with...

Descripción completa

Detalles Bibliográficos
Autores principales: Saunders, John, Lißner, Maria, Townsend, David, Petrinic, Nik, Bergmann, Jeroen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901696/
https://www.ncbi.nlm.nih.gov/pubmed/35256721
http://dx.doi.org/10.1038/s41598-022-08018-1
Descripción
Sumario:Ethylene-Vinyl Acetate (EVA) is the most popular material for manufacturing mouthguards. However, EVA mouthguards are problematic, for example inconsistent thicknesses across the mouthguard. Additive manufacturing provides a promising solution to this problem, as it can manufacture mouthguards with a greater precision. This paper compares the energy dissipation of EVA, the current material used for mouthguards, to various designs of a 3D printed material, some of which contain air cells. Impact testing was carried out at three different strain rates. The Split-Hopkinson bar was used for medium and high strain rate tests, and an Instron test rig was used for low strain rate testing. The best performing design dissipated 25% more energy than EVA in the medium and high strain rate testing respectively while the low strain rate testing was inconclusive. This research has shown that additive manufacturing provides a viable method of manufacturing mouthguards. This opens up the opportunity for embedding electronics/sensors into additive manufactured mouthguards.