Cargando…
A red fluorescent protein with improved monomericity enables ratiometric voltage imaging with ASAP3
A ratiometric genetically encoded voltage indicator (GEVI) would be desirable for tracking transmembrane voltage changes in the presence of sample motion. We performed combinatorial multi-site mutagenesis on a cyan-excitable red fluorescent protein to create the bright and monomeric mCyRFP3, which p...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901740/ https://www.ncbi.nlm.nih.gov/pubmed/35256624 http://dx.doi.org/10.1038/s41598-022-07313-1 |
Sumario: | A ratiometric genetically encoded voltage indicator (GEVI) would be desirable for tracking transmembrane voltage changes in the presence of sample motion. We performed combinatorial multi-site mutagenesis on a cyan-excitable red fluorescent protein to create the bright and monomeric mCyRFP3, which proved to be uniquely non-perturbing when fused to the GEVI ASAP3. The green/red ratio from ASAP3-mCyRFP3 (ASAP3-R3) reported voltage while correcting for motion artifacts, allowing the visualization of membrane voltage changes in contracting cardiomyocytes and throughout the cell cycle of motile cells. |
---|