Cargando…
Theory of Lehmer transform and its applications in identifying the electroencephalographic signature of major depressive disorder
We propose a novel transformation called Lehmer transform and establish a theoretical framework used to compress and characterize large volumes of highly volatile time series data. The proposed method is a powerful data-driven approach for analyzing extreme events in non-stationary and highly oscill...
Autores principales: | Ataei, Masoud, Wang, Xiaogang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901916/ https://www.ncbi.nlm.nih.gov/pubmed/35256640 http://dx.doi.org/10.1038/s41598-022-07413-y |
Ejemplares similares
-
On the Generalization of Lehmer Problem and High-Dimension Kloosterman Sums
por: Chen, Guohui, et al.
Publicado: (2014) -
An electroencephalographic signature predicts antidepressant response in major depression
por: Wu, Wei, et al.
Publicado: (2020) -
Teaching Ordinal Patterns to a Computer: Efficient Encoding Algorithms Based on the Lehmer Code
por: Berger, Sebastian, et al.
Publicado: (2019) -
Machine Learning-Based Electroencephalographic Phenotypes of Schizophrenia and Major Depressive Disorder
por: Jang, Kuk-In, et al.
Publicado: (2021) -
A review of electroencephalographic changes in diabetes mellitus in relation to major depressive disorder
por: Baskaran, Anusha, et al.
Publicado: (2013)