Cargando…
Drug Repositioning Using Temporal Trajectories of Accompanying Comorbidities in Diabetes Mellitus
BACKGROUND: Most studies of systematic drug repositioning have used drug-oriented data such as chemical structures, gene expression patterns, and adverse effect profiles. As it is often difficult to prove repositioning candidates’ effectiveness in real-world clinical settings, we used patient-center...
Autores principales: | Park, Namgi, Jeon, Ja Young, Jeong, Eugene, Kim, Soyeon, Yoon, Dukyong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Korean Endocrine Society
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8901955/ https://www.ncbi.nlm.nih.gov/pubmed/35144331 http://dx.doi.org/10.3803/EnM.2021.1275 |
Ejemplares similares
-
Temporal trajectories of accompanying comorbidities in patients with type 2 diabetes: a Korean nationwide observational study
por: Jeong, Eugene, et al.
Publicado: (2020) -
Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals
por: Jeong, Eugene, et al.
Publicado: (2018) -
Correction: Machine learning model combining features from algorithms with different analytical methodologies to detect laboratory-event-related adverse drug reaction signals
por: Jeong, Eugene, et al.
Publicado: (2019) -
A Study on Methodologies of Drug Repositioning Using Biomedical Big Data: A Focus on Diabetes Mellitus
por: Lee, Suehyun, et al.
Publicado: (2022) -
A Network-Biology Informed Computational Drug Repositioning Strategy to Target Disease Risk Trajectories and Comorbidities of Peripheral Artery Disease
por: Shameer, Khader, et al.
Publicado: (2018)