Cargando…
A Multi-Task Learning Framework for Automated Segmentation and Classification of Breast Tumors From Ultrasound Images
Breast cancer is one of the most fatal diseases leading to the death of several women across the world. But early diagnosis of breast cancer can help to reduce the mortality rate. So an efficient multi-task learning approach is proposed in this work for the automatic segmentation and classification...
Autores principales: | Chowdary, Jignesh, Yogarajah, Pratheepan, Chaurasia, Priyanka, Guruviah, Velmathi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902030/ https://www.ncbi.nlm.nih.gov/pubmed/35128997 http://dx.doi.org/10.1177/01617346221075769 |
Ejemplares similares
-
Nucleus segmentation and classification using residual SE-UNet and feature concatenation approach incervical cytopathology cell images
por: Chowdary, G Jignesh, et al.
Publicado: (2023) -
Automated lead toxicity prediction using computational modelling framework
por: Chaurasia, Priyanka, et al.
Publicado: (2023) -
Enhanced multimodal medical image fusion based on Pythagorean fuzzy set: an innovative approach
por: Haribabu, Maruturi, et al.
Publicado: (2023) -
An Improved Multimodal Medical Image Fusion Approach Using Intuitionistic Fuzzy Set and Intuitionistic Fuzzy Cross-Correlation
por: Haribabu, Maruturi, et al.
Publicado: (2023) -
GSN-HVNET: A Lightweight, Multi-Task Deep Learning Framework for Nuclei Segmentation and Classification
por: Zhao, Tengfei, et al.
Publicado: (2023)