Cargando…
Prediction of future imagery of lung nodule as growth modeling with follow-up computed tomography scans using deep learning: a retrospective cohort study
BACKGROUND: Risk prediction models of lung nodules have been built to alleviate the heavy interpretative burden on clinicians. However, the malignancy scores output by those models can be difficult to interpret in a clinically meaningful manner. In contrast, the modeling of lung nodule growth may be...
Autores principales: | Tao, Guangyu, Zhu, Li, Chen, Qunhui, Yin, Lekang, Li, Yamin, Yang, Jiancheng, Ni, Bingbing, Zhang, Zheng, Koo, Chi Wan, Patil, Pradnya D., Chen, Yinan, Yu, Hong, Xu, Yi, Ye, Xiaodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902095/ https://www.ncbi.nlm.nih.gov/pubmed/35280310 http://dx.doi.org/10.21037/tlcr-22-59 |
Ejemplares similares
-
Deep learning predicts malignancy and metastasis of solid pulmonary nodules from CT scans
por: Mu, Junhao, et al.
Publicado: (2023) -
Technical comparison of continuous versus intermittent perfusion computed tomography computed tomography scans of the human pancreas
por: Wan, Yamin, et al.
Publicado: (2023) -
Longitudinal prediction of lung nodule invasiveness by sequential modelling with common clinical computed tomography (CT) measurements: a prediction accuracy study
por: Tao, Guangyu, et al.
Publicado: (2022) -
Deep-learning-assisted detection and segmentation of rib fractures from CT scans: Development and validation of FracNet
por: Jin, Liang, et al.
Publicado: (2020) -
Significance of pulmonary nodules in multi-detector computed tomography scan of noncancerous patients
por: Toghiani, Ali, et al.
Publicado: (2015)