Cargando…

A flexible and stretchable bionic true random number generator

The volume of securely encrypted data transmission increases continuously in modern society with all things connected. Towards this end, true random numbers generated from physical sources are highly required for guaranteeing security of encryption and decryption schemes for exchanging sensitive inf...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Yongbiao, Chen, Kun, Huang, Feng, Wang, Pidong, Leng, Xiao, Li, Dong, Kang, Jianbin, Qiu, Zhiguang, Yao, Yao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Tsinghua University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902273/
https://www.ncbi.nlm.nih.gov/pubmed/35281218
http://dx.doi.org/10.1007/s12274-022-4109-9
Descripción
Sumario:The volume of securely encrypted data transmission increases continuously in modern society with all things connected. Towards this end, true random numbers generated from physical sources are highly required for guaranteeing security of encryption and decryption schemes for exchanging sensitive information. However, majority of true random number generators (TRNGs) are mechanically rigid, and thus cannot be compatibly integrated with some specific flexible platforms. Herein, we present a flexible and stretchable bionic TRNG inspired by the uniqueness and randomness of biological architectures. The flexible TRNG film is molded from the surface microstructures of natural plants (e.g., ginkgo leaf) via a simple, low-cost, and environmentally friendly manufacturing process. In our proof-of-principle experiment, the TRNG exhibits a fast generation speed of up to 1.04 Gbit/s, in which random numbers are fully extracted from laser speckle patterns with a high extraction rate of 72%. Significantly, the resulting random bit streams successfully pass all randomness test suites including NIST, TestU01, and DIEHARDER. Even after 10,000 times cyclic stretching or bending tests, or during temperature shock (−25–80 °C), the bionic TRNG still reveals robust mechanical reliability and thermal stability. Such a flexible TRNG shows a promising potential in information security of emerging flexible networked electronics. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (light path diagram of transmitted laser speckle, pseudo random pattern, statistical distribution of bionic microstructures, haze of the bionic TRNG film, multi-layer circular laser intensity pattern, percentage of bit 0/1 for different hashed images, Pearson correlation coefficient between 100 different speckle images, the whole process of randomness extraction, SEM images of the flexible TRNG film after 10,000 times stretching and bending, continuous work stability of the TRNG at low or high temperature, light path diagram of reflective laser speckle, and detailed randomness test results of NIST, TestU01, and DIEHARDER) is available in the online version of this article at 10.1007/s12274-022-4109-9.