Cargando…

Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies

BACKGROUND: In non-randomized studies (NRSs) where a continuous outcome variable (e.g., depressive symptoms) is assessed at baseline and follow-up, it is common to observe imbalance of the baseline values between the treatment/exposure group and control group. This may bias the study and consequentl...

Descripción completa

Detalles Bibliográficos
Autores principales: Syrogiannouli, Lamprini, Wildisen, Lea, Meuwese, Christiaan, Bauer, Douglas C., Cappola, Anne R., Gussekloo, Jacobijn, den Elzen, Wendy P. J., Trompet, Stella, Westendorp, Rudi G. J., Jukema, J. Wouter, Ferrucci, Luigi, Ceresini, Graziano, Åsvold, Bjørn O., Chaker, Layal, Peeters, Robin P., Imaizumi, Misa, Ohishi, Waka, Vaes, Bert, Völzke, Henry, Sgarbi, Josè A., Walsh, John P., Dullaart, Robin P. F., Bakker, Stephan J. L., Iacoviello, Massimo, Rodondi, Nicolas, Del Giovane, Cinzia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902696/
https://www.ncbi.nlm.nih.gov/pubmed/35273528
http://dx.doi.org/10.3389/fpsyt.2022.774251
_version_ 1784664644836655104
author Syrogiannouli, Lamprini
Wildisen, Lea
Meuwese, Christiaan
Bauer, Douglas C.
Cappola, Anne R.
Gussekloo, Jacobijn
den Elzen, Wendy P. J.
Trompet, Stella
Westendorp, Rudi G. J.
Jukema, J. Wouter
Ferrucci, Luigi
Ceresini, Graziano
Åsvold, Bjørn O.
Chaker, Layal
Peeters, Robin P.
Imaizumi, Misa
Ohishi, Waka
Vaes, Bert
Völzke, Henry
Sgarbi, Josè A.
Walsh, John P.
Dullaart, Robin P. F.
Bakker, Stephan J. L.
Iacoviello, Massimo
Rodondi, Nicolas
Del Giovane, Cinzia
author_facet Syrogiannouli, Lamprini
Wildisen, Lea
Meuwese, Christiaan
Bauer, Douglas C.
Cappola, Anne R.
Gussekloo, Jacobijn
den Elzen, Wendy P. J.
Trompet, Stella
Westendorp, Rudi G. J.
Jukema, J. Wouter
Ferrucci, Luigi
Ceresini, Graziano
Åsvold, Bjørn O.
Chaker, Layal
Peeters, Robin P.
Imaizumi, Misa
Ohishi, Waka
Vaes, Bert
Völzke, Henry
Sgarbi, Josè A.
Walsh, John P.
Dullaart, Robin P. F.
Bakker, Stephan J. L.
Iacoviello, Massimo
Rodondi, Nicolas
Del Giovane, Cinzia
author_sort Syrogiannouli, Lamprini
collection PubMed
description BACKGROUND: In non-randomized studies (NRSs) where a continuous outcome variable (e.g., depressive symptoms) is assessed at baseline and follow-up, it is common to observe imbalance of the baseline values between the treatment/exposure group and control group. This may bias the study and consequently a meta-analysis (MA) estimate. These estimates may differ across statistical methods used to deal with this issue. Analysis of individual participant data (IPD) allows standardization of methods across studies. We aimed to identify methods used in published IPD-MAs of NRSs for continuous outcomes, and to compare different methods to account for baseline values of outcome variables in IPD-MA of NRSs using two empirical examples from the Thyroid Studies Collaboration (TSC). METHODS: For the first aim we systematically searched in MEDLINE, EMBASE, and Cochrane from inception to February 2021 to identify published IPD-MAs of NRSs that adjusted for baseline outcome measures in the analysis of continuous outcomes. For the second aim, we applied analysis of covariance (ANCOVA), change score, propensity score and the naïve approach (ignores the baseline outcome data) in IPD-MA from NRSs on the association between subclinical hyperthyroidism and depressive symptoms and renal function. We estimated the study and meta-analytic mean difference (MD) and relative standard error (SE). We used both fixed- and random-effects MA. RESULTS: Ten of 18 (56%) of the included studies used the change score method, seven (39%) studies used ANCOVA and one the propensity score (5%). The study estimates were similar across the methods in studies in which groups were balanced at baseline with regard to outcome variables but differed in studies with baseline imbalance. In our empirical examples, ANCOVA and change score showed study results on the same direction, not the propensity score. In our applications, ANCOVA provided more precise estimates, both at study and meta-analytical level, in comparison to other methods. Heterogeneity was higher when change score was used as outcome, moderate for ANCOVA and null with the propensity score. CONCLUSION: ANCOVA provided the most precise estimates at both study and meta-analytic level and thus seems preferable in the meta-analysis of IPD from non-randomized studies. For the studies that were well-balanced between groups, change score, and ANCOVA performed similarly.
format Online
Article
Text
id pubmed-8902696
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89026962022-03-09 Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies Syrogiannouli, Lamprini Wildisen, Lea Meuwese, Christiaan Bauer, Douglas C. Cappola, Anne R. Gussekloo, Jacobijn den Elzen, Wendy P. J. Trompet, Stella Westendorp, Rudi G. J. Jukema, J. Wouter Ferrucci, Luigi Ceresini, Graziano Åsvold, Bjørn O. Chaker, Layal Peeters, Robin P. Imaizumi, Misa Ohishi, Waka Vaes, Bert Völzke, Henry Sgarbi, Josè A. Walsh, John P. Dullaart, Robin P. F. Bakker, Stephan J. L. Iacoviello, Massimo Rodondi, Nicolas Del Giovane, Cinzia Front Psychiatry Psychiatry BACKGROUND: In non-randomized studies (NRSs) where a continuous outcome variable (e.g., depressive symptoms) is assessed at baseline and follow-up, it is common to observe imbalance of the baseline values between the treatment/exposure group and control group. This may bias the study and consequently a meta-analysis (MA) estimate. These estimates may differ across statistical methods used to deal with this issue. Analysis of individual participant data (IPD) allows standardization of methods across studies. We aimed to identify methods used in published IPD-MAs of NRSs for continuous outcomes, and to compare different methods to account for baseline values of outcome variables in IPD-MA of NRSs using two empirical examples from the Thyroid Studies Collaboration (TSC). METHODS: For the first aim we systematically searched in MEDLINE, EMBASE, and Cochrane from inception to February 2021 to identify published IPD-MAs of NRSs that adjusted for baseline outcome measures in the analysis of continuous outcomes. For the second aim, we applied analysis of covariance (ANCOVA), change score, propensity score and the naïve approach (ignores the baseline outcome data) in IPD-MA from NRSs on the association between subclinical hyperthyroidism and depressive symptoms and renal function. We estimated the study and meta-analytic mean difference (MD) and relative standard error (SE). We used both fixed- and random-effects MA. RESULTS: Ten of 18 (56%) of the included studies used the change score method, seven (39%) studies used ANCOVA and one the propensity score (5%). The study estimates were similar across the methods in studies in which groups were balanced at baseline with regard to outcome variables but differed in studies with baseline imbalance. In our empirical examples, ANCOVA and change score showed study results on the same direction, not the propensity score. In our applications, ANCOVA provided more precise estimates, both at study and meta-analytical level, in comparison to other methods. Heterogeneity was higher when change score was used as outcome, moderate for ANCOVA and null with the propensity score. CONCLUSION: ANCOVA provided the most precise estimates at both study and meta-analytic level and thus seems preferable in the meta-analysis of IPD from non-randomized studies. For the studies that were well-balanced between groups, change score, and ANCOVA performed similarly. Frontiers Media S.A. 2022-02-22 /pmc/articles/PMC8902696/ /pubmed/35273528 http://dx.doi.org/10.3389/fpsyt.2022.774251 Text en Copyright © 2022 Syrogiannouli, Wildisen, Meuwese, Bauer, Cappola, Gussekloo, den Elzen, Trompet, Westendorp, Jukema, Ferrucci, Ceresini, Åsvold, Chaker, Peeters, Imaizumi, Ohishi, Vaes, Völzke, Sgarbi, Walsh, Dullaart, Bakker, Iacoviello, Rodondi and Del Giovane. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Psychiatry
Syrogiannouli, Lamprini
Wildisen, Lea
Meuwese, Christiaan
Bauer, Douglas C.
Cappola, Anne R.
Gussekloo, Jacobijn
den Elzen, Wendy P. J.
Trompet, Stella
Westendorp, Rudi G. J.
Jukema, J. Wouter
Ferrucci, Luigi
Ceresini, Graziano
Åsvold, Bjørn O.
Chaker, Layal
Peeters, Robin P.
Imaizumi, Misa
Ohishi, Waka
Vaes, Bert
Völzke, Henry
Sgarbi, Josè A.
Walsh, John P.
Dullaart, Robin P. F.
Bakker, Stephan J. L.
Iacoviello, Massimo
Rodondi, Nicolas
Del Giovane, Cinzia
Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title_full Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title_fullStr Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title_full_unstemmed Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title_short Incorporating Baseline Outcome Data in Individual Participant Data Meta-Analysis of Non-randomized Studies
title_sort incorporating baseline outcome data in individual participant data meta-analysis of non-randomized studies
topic Psychiatry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902696/
https://www.ncbi.nlm.nih.gov/pubmed/35273528
http://dx.doi.org/10.3389/fpsyt.2022.774251
work_keys_str_mv AT syrogiannoulilamprini incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT wildisenlea incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT meuwesechristiaan incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT bauerdouglasc incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT cappolaanner incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT gussekloojacobijn incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT denelzenwendypj incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT trompetstella incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT westendorprudigj incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT jukemajwouter incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT ferrucciluigi incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT ceresinigraziano incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT asvoldbjørno incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT chakerlayal incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT peetersrobinp incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT imaizumimisa incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT ohishiwaka incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT vaesbert incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT volzkehenry incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT sgarbijosea incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT walshjohnp incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT dullaartrobinpf incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT bakkerstephanjl incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT iacoviellomassimo incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT rodondinicolas incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies
AT delgiovanecinzia incorporatingbaselineoutcomedatainindividualparticipantdatametaanalysisofnonrandomizedstudies