Cargando…
Effect of the Aza-N-Bridge and Push–Pull Moieties: A Comparative Study between BODIPYs and Aza-BODIPYs
[Image: see text] In the field of fluorescent dyes, difluoroboron-dipyrromethenes (BODIPY) have a highly respected position. To predict their photophysical properties prior to synthesis and therefore to successfully design molecules specifically for one’s needs, a solid structure–function understand...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902755/ https://www.ncbi.nlm.nih.gov/pubmed/35188769 http://dx.doi.org/10.1021/acs.joc.1c02525 |
Sumario: | [Image: see text] In the field of fluorescent dyes, difluoroboron-dipyrromethenes (BODIPY) have a highly respected position. To predict their photophysical properties prior to synthesis and therefore to successfully design molecules specifically for one’s needs, a solid structure–function understanding based on experimental observations is vital. This work delivers a photophysical evaluation of BODIPY and aza-BODIPY derivatives equipped with different electron-withdrawing/-donating substituents. Using combinatorial chemistry, pyrroles substituted with electron-donating/-withdrawing substituents were condensed together in two different manners, thus providing two sets of molecules. The only difference between the two sets is the bridging unit providing a so far lacking comparison between BODIPYs and aza-BODIPYs structural homologues. Replacing the meso-methine bridge with an aza-N bridge results in a red-shifted transition and considerably different, temperature-activated, excited-state relaxation pathways. The effect of electron-donating units on the absorption but not emission for BODIPYs was suppressed compared to aza-BODIPYs. This result could be evident in a substitution pattern-dependent Stokes shift. The outlook of this study is a deeper understanding of the structure–optics relationship of the (aza)-BODIPY-dye class, leading to an improvement in the de novo design of tailor-made molecules for future applications. |
---|