Cargando…

Low-temperature reaction dynamics of paramagnetic species in the gas phase

Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these ga...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Lok Yiu, Miossec, Chloé, Heazlewood, Brianna R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902758/
https://www.ncbi.nlm.nih.gov/pubmed/35188499
http://dx.doi.org/10.1039/d1cc06394d
_version_ 1784664657236066304
author Wu, Lok Yiu
Miossec, Chloé
Heazlewood, Brianna R.
author_facet Wu, Lok Yiu
Miossec, Chloé
Heazlewood, Brianna R.
author_sort Wu, Lok Yiu
collection PubMed
description Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species—from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field.
format Online
Article
Text
id pubmed-8902758
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-89027582022-03-29 Low-temperature reaction dynamics of paramagnetic species in the gas phase Wu, Lok Yiu Miossec, Chloé Heazlewood, Brianna R. Chem Commun (Camb) Chemistry Radicals are abundant in a range of important gas-phase environments. They are prevalent in the atmosphere, in interstellar space, and in combustion processes. As such, understanding how radicals react is essential for the development of accurate models of the complex chemistry occurring in these gas-phase environments. By controlling the properties of the colliding reactants, we can also gain insights into how radical reactions occur on a fundamental level. Recent years have seen remarkable advances in the breadth of experimental methods successfully applied to the study of reaction dynamics involving paramagnetic species—from improvements to the well-known crossed molecular beams approach to newer techniques involving magnetically guided and decelerated beams. Coupled with ever-improving theoretical methods, quantum features are being observed and interesting insights into reaction dynamics are being uncovered in an increasingly diverse range of systems. In this highlight article, we explore some of the exciting recent developments in the study of chemical dynamics involving paramagnetic species. We focus on low-energy reactive collisions involving neutral radical species, where the reaction parameters are controlled. We conclude by identifying some of the limitations of current methods and exploring possible new directions for the field. The Royal Society of Chemistry 2022-02-21 /pmc/articles/PMC8902758/ /pubmed/35188499 http://dx.doi.org/10.1039/d1cc06394d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Wu, Lok Yiu
Miossec, Chloé
Heazlewood, Brianna R.
Low-temperature reaction dynamics of paramagnetic species in the gas phase
title Low-temperature reaction dynamics of paramagnetic species in the gas phase
title_full Low-temperature reaction dynamics of paramagnetic species in the gas phase
title_fullStr Low-temperature reaction dynamics of paramagnetic species in the gas phase
title_full_unstemmed Low-temperature reaction dynamics of paramagnetic species in the gas phase
title_short Low-temperature reaction dynamics of paramagnetic species in the gas phase
title_sort low-temperature reaction dynamics of paramagnetic species in the gas phase
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8902758/
https://www.ncbi.nlm.nih.gov/pubmed/35188499
http://dx.doi.org/10.1039/d1cc06394d
work_keys_str_mv AT wulokyiu lowtemperaturereactiondynamicsofparamagneticspeciesinthegasphase
AT miossecchloe lowtemperaturereactiondynamicsofparamagneticspeciesinthegasphase
AT heazlewoodbriannar lowtemperaturereactiondynamicsofparamagneticspeciesinthegasphase