Cargando…
Robust priors for regularized regression
Induction benefits from useful priors. Penalized regression approaches, like ridge regression, shrink weights toward zero but zero association is usually not a sensible prior. Inspired by simple and robust decision heuristics humans use, we constructed non-zero priors for penalized regression models...
Autores principales: | Bobadilla-Suarez, Sebastian, Jones, Matt, Love, Bradley C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903146/ https://www.ncbi.nlm.nih.gov/pubmed/34861584 http://dx.doi.org/10.1016/j.cogpsych.2021.101444 |
Ejemplares similares
-
Heuristics as Bayesian inference under extreme priors
por: Parpart, Paula, et al.
Publicado: (2018) -
Fast or Frugal, but Not Both: Decision Heuristics Under Time Pressure
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2017) -
Sub-Graph Regularization on Kernel Regression for Robust Semi-Supervised Dimensionality Reduction
por: Liu, Jiao, et al.
Publicado: (2019) -
Subjective value and decision entropy are jointly encoded by aligned gradients across the human brain
por: Bobadilla-Suarez, Sebastian, et al.
Publicado: (2020) -
Comparison of no-prior and soft-prior regularization in biomedical microwave imaging
por: Golnabi, Amir H., et al.
Publicado: (2011)