Cargando…

Increase in ACC GABA+ levels correlate with decrease in migraine frequency, intensity and disability over time

BACKGROUND: An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is...

Descripción completa

Detalles Bibliográficos
Autores principales: Peek, Aimie L., Leaver, Andrew M., Foster, Sheryl, Puts, Nicolaas A., Oeltzschner, Georg, Henderson, Luke, Galloway, Graham, Ng, Karl, Refshauge, Kathryn, Rebbeck, Trudy
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Milan 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8903525/
https://www.ncbi.nlm.nih.gov/pubmed/34903165
http://dx.doi.org/10.1186/s10194-021-01352-1
Descripción
Sumario:BACKGROUND: An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules (“GABA+”) using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. METHODS: We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. RESULTS: The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = − 0.51, p = 0.03), intensity (r = − 0.51, p = 0.03) and disability (r = − 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). CONCLUSION: The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s10194-021-01352-1.