Cargando…

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories su...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Lissa, Caspar J., Stroebe, Wolfgang, vanDellen, Michelle R., Leander, N. Pontus, Agostini, Maximilian, Draws, Tim, Grygoryshyn, Andrii, Gützgow, Ben, Kreienkamp, Jannis, Vetter, Clara S., Abakoumkin, Georgios, Abdul Khaiyom, Jamilah Hanum, Ahmedi, Vjolica, Akkas, Handan, Almenara, Carlos A., Atta, Mohsin, Bagci, Sabahat Cigdem, Basel, Sima, Kida, Edona Berisha, Bernardo, Allan B.I., Buttrick, Nicholas R., Chobthamkit, Phatthanakit, Choi, Hoon-Seok, Cristea, Mioara, Csaba, Sára, Damnjanović, Kaja, Danyliuk, Ivan, Dash, Arobindu, Di Santo, Daniela, Douglas, Karen M., Enea, Violeta, Faller, Daiane Gracieli, Fitzsimons, Gavan J., Gheorghiu, Alexandra, Gómez, Ángel, Hamaidia, Ali, Han, Qing, Helmy, Mai, Hudiyana, Joevarian, Jeronimus, Bertus F., Jiang, Ding-Yu, Jovanović, Veljko, Kamenov, Željka, Kende, Anna, Keng, Shian-Ling, Thanh Kieu, Tra Thi, Koc, Yasin, Kovyazina, Kamila, Kozytska, Inna, Krause, Joshua, Kruglanksi, Arie W., Kurapov, Anton, Kutlaca, Maja, Lantos, Nóra Anna, Lemay, Edward P., Jaya Lesmana, Cokorda Bagus, Louis, Winnifred R., Lueders, Adrian, Malik, Najma Iqbal, Martinez, Anton P., McCabe, Kira O., Mehulić, Jasmina, Milla, Mirra Noor, Mohammed, Idris, Molinario, Erica, Moyano, Manuel, Muhammad, Hayat, Mula, Silvana, Muluk, Hamdi, Myroniuk, Solomiia, Najafi, Reza, Nisa, Claudia F., Nyúl, Boglárka, O’Keefe, Paul A., Olivas Osuna, Jose Javier, Osin, Evgeny N., Park, Joonha, Pica, Gennaro, Pierro, Antonio, Rees, Jonas H., Reitsema, Anne Margit, Resta, Elena, Rullo, Marika, Ryan, Michelle K., Samekin, Adil, Santtila, Pekka, Sasin, Edyta M., Schumpe, Birga M., Selim, Heyla A., Stanton, Michael Vicente, Sultana, Samiah, Sutton, Robbie M., Tseliou, Eleftheria, Utsugi, Akira, Anne van Breen, Jolien, Van Veen, Kees, Vázquez, Alexandra, Wollast, Robin, Wai-Lan Yeung, Victoria, Zand, Somayeh, Žeželj, Iris Lav, Zheng, Bang, Zick, Andreas, Zúñiga, Claudia, Bélanger, Jocelyn J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904175/
https://www.ncbi.nlm.nih.gov/pubmed/35282654
http://dx.doi.org/10.1016/j.patter.2022.100482
Descripción
Sumario:Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.