Cargando…

Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories su...

Descripción completa

Detalles Bibliográficos
Autores principales: Van Lissa, Caspar J., Stroebe, Wolfgang, vanDellen, Michelle R., Leander, N. Pontus, Agostini, Maximilian, Draws, Tim, Grygoryshyn, Andrii, Gützgow, Ben, Kreienkamp, Jannis, Vetter, Clara S., Abakoumkin, Georgios, Abdul Khaiyom, Jamilah Hanum, Ahmedi, Vjolica, Akkas, Handan, Almenara, Carlos A., Atta, Mohsin, Bagci, Sabahat Cigdem, Basel, Sima, Kida, Edona Berisha, Bernardo, Allan B.I., Buttrick, Nicholas R., Chobthamkit, Phatthanakit, Choi, Hoon-Seok, Cristea, Mioara, Csaba, Sára, Damnjanović, Kaja, Danyliuk, Ivan, Dash, Arobindu, Di Santo, Daniela, Douglas, Karen M., Enea, Violeta, Faller, Daiane Gracieli, Fitzsimons, Gavan J., Gheorghiu, Alexandra, Gómez, Ángel, Hamaidia, Ali, Han, Qing, Helmy, Mai, Hudiyana, Joevarian, Jeronimus, Bertus F., Jiang, Ding-Yu, Jovanović, Veljko, Kamenov, Željka, Kende, Anna, Keng, Shian-Ling, Thanh Kieu, Tra Thi, Koc, Yasin, Kovyazina, Kamila, Kozytska, Inna, Krause, Joshua, Kruglanksi, Arie W., Kurapov, Anton, Kutlaca, Maja, Lantos, Nóra Anna, Lemay, Edward P., Jaya Lesmana, Cokorda Bagus, Louis, Winnifred R., Lueders, Adrian, Malik, Najma Iqbal, Martinez, Anton P., McCabe, Kira O., Mehulić, Jasmina, Milla, Mirra Noor, Mohammed, Idris, Molinario, Erica, Moyano, Manuel, Muhammad, Hayat, Mula, Silvana, Muluk, Hamdi, Myroniuk, Solomiia, Najafi, Reza, Nisa, Claudia F., Nyúl, Boglárka, O’Keefe, Paul A., Olivas Osuna, Jose Javier, Osin, Evgeny N., Park, Joonha, Pica, Gennaro, Pierro, Antonio, Rees, Jonas H., Reitsema, Anne Margit, Resta, Elena, Rullo, Marika, Ryan, Michelle K., Samekin, Adil, Santtila, Pekka, Sasin, Edyta M., Schumpe, Birga M., Selim, Heyla A., Stanton, Michael Vicente, Sultana, Samiah, Sutton, Robbie M., Tseliou, Eleftheria, Utsugi, Akira, Anne van Breen, Jolien, Van Veen, Kees, Vázquez, Alexandra, Wollast, Robin, Wai-Lan Yeung, Victoria, Zand, Somayeh, Žeželj, Iris Lav, Zheng, Bang, Zick, Andreas, Zúñiga, Claudia, Bélanger, Jocelyn J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904175/
https://www.ncbi.nlm.nih.gov/pubmed/35282654
http://dx.doi.org/10.1016/j.patter.2022.100482
_version_ 1784664900238311424
author Van Lissa, Caspar J.
Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon-Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding-Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian-Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O’Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
Van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
Žeželj, Iris Lav
Zheng, Bang
Zick, Andreas
Zúñiga, Claudia
Bélanger, Jocelyn J.
author_facet Van Lissa, Caspar J.
Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon-Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding-Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian-Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O’Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
Van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
Žeželj, Iris Lav
Zheng, Bang
Zick, Andreas
Zúñiga, Claudia
Bélanger, Jocelyn J.
author_sort Van Lissa, Caspar J.
collection PubMed
description Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
format Online
Article
Text
id pubmed-8904175
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-89041752022-03-09 Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic Van Lissa, Caspar J. Stroebe, Wolfgang vanDellen, Michelle R. Leander, N. Pontus Agostini, Maximilian Draws, Tim Grygoryshyn, Andrii Gützgow, Ben Kreienkamp, Jannis Vetter, Clara S. Abakoumkin, Georgios Abdul Khaiyom, Jamilah Hanum Ahmedi, Vjolica Akkas, Handan Almenara, Carlos A. Atta, Mohsin Bagci, Sabahat Cigdem Basel, Sima Kida, Edona Berisha Bernardo, Allan B.I. Buttrick, Nicholas R. Chobthamkit, Phatthanakit Choi, Hoon-Seok Cristea, Mioara Csaba, Sára Damnjanović, Kaja Danyliuk, Ivan Dash, Arobindu Di Santo, Daniela Douglas, Karen M. Enea, Violeta Faller, Daiane Gracieli Fitzsimons, Gavan J. Gheorghiu, Alexandra Gómez, Ángel Hamaidia, Ali Han, Qing Helmy, Mai Hudiyana, Joevarian Jeronimus, Bertus F. Jiang, Ding-Yu Jovanović, Veljko Kamenov, Željka Kende, Anna Keng, Shian-Ling Thanh Kieu, Tra Thi Koc, Yasin Kovyazina, Kamila Kozytska, Inna Krause, Joshua Kruglanksi, Arie W. Kurapov, Anton Kutlaca, Maja Lantos, Nóra Anna Lemay, Edward P. Jaya Lesmana, Cokorda Bagus Louis, Winnifred R. Lueders, Adrian Malik, Najma Iqbal Martinez, Anton P. McCabe, Kira O. Mehulić, Jasmina Milla, Mirra Noor Mohammed, Idris Molinario, Erica Moyano, Manuel Muhammad, Hayat Mula, Silvana Muluk, Hamdi Myroniuk, Solomiia Najafi, Reza Nisa, Claudia F. Nyúl, Boglárka O’Keefe, Paul A. Olivas Osuna, Jose Javier Osin, Evgeny N. Park, Joonha Pica, Gennaro Pierro, Antonio Rees, Jonas H. Reitsema, Anne Margit Resta, Elena Rullo, Marika Ryan, Michelle K. Samekin, Adil Santtila, Pekka Sasin, Edyta M. Schumpe, Birga M. Selim, Heyla A. Stanton, Michael Vicente Sultana, Samiah Sutton, Robbie M. Tseliou, Eleftheria Utsugi, Akira Anne van Breen, Jolien Van Veen, Kees Vázquez, Alexandra Wollast, Robin Wai-Lan Yeung, Victoria Zand, Somayeh Žeželj, Iris Lav Zheng, Bang Zick, Andreas Zúñiga, Claudia Bélanger, Jocelyn J. Patterns (N Y) Article Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant. Elsevier 2022-03-09 /pmc/articles/PMC8904175/ /pubmed/35282654 http://dx.doi.org/10.1016/j.patter.2022.100482 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Van Lissa, Caspar J.
Stroebe, Wolfgang
vanDellen, Michelle R.
Leander, N. Pontus
Agostini, Maximilian
Draws, Tim
Grygoryshyn, Andrii
Gützgow, Ben
Kreienkamp, Jannis
Vetter, Clara S.
Abakoumkin, Georgios
Abdul Khaiyom, Jamilah Hanum
Ahmedi, Vjolica
Akkas, Handan
Almenara, Carlos A.
Atta, Mohsin
Bagci, Sabahat Cigdem
Basel, Sima
Kida, Edona Berisha
Bernardo, Allan B.I.
Buttrick, Nicholas R.
Chobthamkit, Phatthanakit
Choi, Hoon-Seok
Cristea, Mioara
Csaba, Sára
Damnjanović, Kaja
Danyliuk, Ivan
Dash, Arobindu
Di Santo, Daniela
Douglas, Karen M.
Enea, Violeta
Faller, Daiane Gracieli
Fitzsimons, Gavan J.
Gheorghiu, Alexandra
Gómez, Ángel
Hamaidia, Ali
Han, Qing
Helmy, Mai
Hudiyana, Joevarian
Jeronimus, Bertus F.
Jiang, Ding-Yu
Jovanović, Veljko
Kamenov, Željka
Kende, Anna
Keng, Shian-Ling
Thanh Kieu, Tra Thi
Koc, Yasin
Kovyazina, Kamila
Kozytska, Inna
Krause, Joshua
Kruglanksi, Arie W.
Kurapov, Anton
Kutlaca, Maja
Lantos, Nóra Anna
Lemay, Edward P.
Jaya Lesmana, Cokorda Bagus
Louis, Winnifred R.
Lueders, Adrian
Malik, Najma Iqbal
Martinez, Anton P.
McCabe, Kira O.
Mehulić, Jasmina
Milla, Mirra Noor
Mohammed, Idris
Molinario, Erica
Moyano, Manuel
Muhammad, Hayat
Mula, Silvana
Muluk, Hamdi
Myroniuk, Solomiia
Najafi, Reza
Nisa, Claudia F.
Nyúl, Boglárka
O’Keefe, Paul A.
Olivas Osuna, Jose Javier
Osin, Evgeny N.
Park, Joonha
Pica, Gennaro
Pierro, Antonio
Rees, Jonas H.
Reitsema, Anne Margit
Resta, Elena
Rullo, Marika
Ryan, Michelle K.
Samekin, Adil
Santtila, Pekka
Sasin, Edyta M.
Schumpe, Birga M.
Selim, Heyla A.
Stanton, Michael Vicente
Sultana, Samiah
Sutton, Robbie M.
Tseliou, Eleftheria
Utsugi, Akira
Anne van Breen, Jolien
Van Veen, Kees
Vázquez, Alexandra
Wollast, Robin
Wai-Lan Yeung, Victoria
Zand, Somayeh
Žeželj, Iris Lav
Zheng, Bang
Zick, Andreas
Zúñiga, Claudia
Bélanger, Jocelyn J.
Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_full Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_fullStr Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_full_unstemmed Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_short Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
title_sort using machine learning to identify important predictors of covid-19 infection prevention behaviors during the early phase of the pandemic
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904175/
https://www.ncbi.nlm.nih.gov/pubmed/35282654
http://dx.doi.org/10.1016/j.patter.2022.100482
work_keys_str_mv AT vanlissacasparj usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT stroebewolfgang usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT vandellenmicheller usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT leandernpontus usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT agostinimaximilian usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT drawstim usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT grygoryshynandrii usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT gutzgowben usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kreienkampjannis usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT vetterclaras usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT abakoumkingeorgios usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT abdulkhaiyomjamilahhanum usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT ahmedivjolica usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT akkashandan usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT almenaracarlosa usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT attamohsin usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT bagcisabahatcigdem usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT baselsima usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kidaedonaberisha usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT bernardoallanbi usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT buttricknicholasr usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT chobthamkitphatthanakit usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT choihoonseok usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT cristeamioara usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT csabasara usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT damnjanovickaja usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT danyliukivan usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT dasharobindu usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT disantodaniela usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT douglaskarenm usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT eneavioleta usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT fallerdaianegracieli usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT fitzsimonsgavanj usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT gheorghiualexandra usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT gomezangel usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT hamaidiaali usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT hanqing usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT helmymai usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT hudiyanajoevarian usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT jeronimusbertusf usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT jiangdingyu usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT jovanovicveljko usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kamenovzeljka usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kendeanna usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kengshianling usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT thanhkieutrathi usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kocyasin usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kovyazinakamila usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kozytskainna usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT krausejoshua usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kruglanksiariew usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kurapovanton usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT kutlacamaja usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT lantosnoraanna usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT lemayedwardp usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT jayalesmanacokordabagus usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT louiswinnifredr usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT luedersadrian usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT maliknajmaiqbal usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT martinezantonp usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT mccabekirao usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT mehulicjasmina usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT millamirranoor usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT mohammedidris usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT molinarioerica usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT moyanomanuel usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT muhammadhayat usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT mulasilvana usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT mulukhamdi usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT myroniuksolomiia usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT najafireza usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT nisaclaudiaf usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT nyulboglarka usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT okeefepaula usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT olivasosunajosejavier usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT osinevgenyn usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT parkjoonha usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT picagennaro usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT pierroantonio usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT reesjonash usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT reitsemaannemargit usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT restaelena usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT rullomarika usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT ryanmichellek usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT samekinadil usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT santtilapekka usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT sasinedytam usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT schumpebirgam usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT selimheylaa usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT stantonmichaelvicente usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT sultanasamiah usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT suttonrobbiem usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT tselioueleftheria usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT utsugiakira usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT annevanbreenjolien usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT vanveenkees usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT vazquezalexandra usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT wollastrobin usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT wailanyeungvictoria usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT zandsomayeh usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT zezeljirislav usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT zhengbang usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT zickandreas usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT zunigaclaudia usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic
AT belangerjocelynj usingmachinelearningtoidentifyimportantpredictorsofcovid19infectionpreventionbehaviorsduringtheearlyphaseofthepandemic