Cargando…
Development and validation of an interpretable machine learning scoring tool for estimating time to emergency readmissions
BACKGROUND: Emergency readmission poses an additional burden on both patients and healthcare systems. Risk stratification is the first step of transitional care interventions targeted at reducing readmission. To accurately predict the short- and intermediate-term risks of readmission and provide inf...
Autores principales: | Xie, Feng, Liu, Nan, Yan, Linxuan, Ning, Yilin, Lim, Ka Keat, Gong, Changlin, Kwan, Yu Heng, Ho, Andrew Fu Wah, Low, Lian Leng, Chakraborty, Bibhas, Ong, Marcus Eng Hock |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904223/ https://www.ncbi.nlm.nih.gov/pubmed/35284804 http://dx.doi.org/10.1016/j.eclinm.2022.101315 |
Ejemplares similares
-
A novel interpretable machine learning system to generate clinical risk scores: An application for predicting early mortality or unplanned readmission in a retrospective cohort study
por: Ning, Yilin, et al.
Publicado: (2022) -
AutoScore-Ordinal: an interpretable machine learning framework for generating scoring models for ordinal outcomes
por: Saffari, Seyed Ehsan, et al.
Publicado: (2022) -
Performance of the LACE index to identify elderly patients at high risk for hospital readmission in Singapore
por: Low, Lian Leng, et al.
Publicado: (2017) -
Shapley variable importance cloud for interpretable machine learning
por: Ning, Yilin, et al.
Publicado: (2022) -
Development and validation of an interpretable clinical score for early identification of acute kidney injury at the emergency department
por: Ang, Yukai, et al.
Publicado: (2022)