Cargando…
Fast, Automated, Knowledge-Based Treatment Planning for Selecting Patients for Proton Therapy Based on Normal Tissue Complication Probabilities
PURPOSE: Selecting patients who will benefit from proton therapy is laborious and subjective. We demonstrate a novel automated solution for creating high-quality knowledge-based plans (KBPs) using proton and photon beams to identify patients for proton treatment based on their normal tissue complica...
Autores principales: | Hytönen, Roni, Vergeer, Marije R., Vanderstraeten, Reynald, Koponen, Timo K., Smith, Christel, Verbakel, Wilko F.A.R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904224/ https://www.ncbi.nlm.nih.gov/pubmed/35282398 http://dx.doi.org/10.1016/j.adro.2022.100903 |
Ejemplares similares
-
Influence of Beam Angle on Normal Tissue Complication Probability of Knowledge-Based Head and Neck Cancer Proton Planning
por: Hytönen, Roni, et al.
Publicado: (2022) -
Evaluation of an Automated Proton Planning Solution
por: Delaney, Alexander R, et al.
Publicado: (2018) -
Single-fraction 34 Gy Lung Stereotactic Body Radiation Therapy Using Proton Transmission Beams: FLASH-dose Calculations and the Influence of Different Dose-rate Methods and Dose/Dose-rate Thresholds
por: van Marlen, Patricia, et al.
Publicado: (2022) -
Using Spatial Probability Maps to Highlight Potential Inaccuracies in Deep Learning-Based Contours: Facilitating Online Adaptive Radiation Therapy
por: van Rooij, Ward, et al.
Publicado: (2021) -
Markerless Real-Time 3-Dimensional kV Tracking of Lung Tumors During Free Breathing Stereotactic Radiation Therapy
por: de Bruin, Kimmie, et al.
Publicado: (2021)