Cargando…
Active immunization with a Her-2/neu-targeting Multi-peptide B cell vaccine prevents lung metastases formation from Her-2/neu breast cancer in a mouse model
In pre-clinical and clinical settings, active immunization with a Her-2/neu vaccine (HerVaxx), comprising B-cell peptide from Trastuzumab binding site, has been shown to reduce primary tumor growth via induction of polyclonal anti-tumor immune responses and immunological memory. Here, we tested the...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904231/ https://www.ncbi.nlm.nih.gov/pubmed/35259675 http://dx.doi.org/10.1016/j.tranon.2022.101378 |
Sumario: | In pre-clinical and clinical settings, active immunization with a Her-2/neu vaccine (HerVaxx), comprising B-cell peptide from Trastuzumab binding site, has been shown to reduce primary tumor growth via induction of polyclonal anti-tumor immune responses and immunological memory. Here, we tested the combination of HerVaxx and the recently identified B-cell epitope/mimotope of Pertuzumab, i.e. a multi-peptide B-cell vaccine, for preventing Her-2/neu lung metastases formation in a mouse model. Active immunization with the multi-peptide vaccine was associated with decreased lung weights, and histological evaluation of the lungs showed that the significant reduction of lung metastases was associated with increased CD4(+) and CD8(+) T cell infiltration. Notably, along with the overall reduction of lungs weights and Her-2 positive metastases, a formation of Her-2/neu-negative tumors but with increased PD-L1 expression was observed. Our results might pave the way to a multi-peptide B-cell Her-2/neu vaccine serving as a secondary intervention in adjuvant settings to prevent tumor recurrence and spread. Moreover, combination therapy targeting PD-L1 may result in total remission of metastases. Such a therapy may be used clinically to alternately target Her-2/neu and PD-L1 in metastatic breast cancer. |
---|