Cargando…

Shared computational principles for language processing in humans and deep language models

Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current...

Descripción completa

Detalles Bibliográficos
Autores principales: Goldstein, Ariel, Zada, Zaid, Buchnik, Eliav, Schain, Mariano, Price, Amy, Aubrey, Bobbi, Nastase, Samuel A., Feder, Amir, Emanuel, Dotan, Cohen, Alon, Jansen, Aren, Gazula, Harshvardhan, Choe, Gina, Rao, Aditi, Kim, Catherine, Casto, Colton, Fanda, Lora, Doyle, Werner, Friedman, Daniel, Dugan, Patricia, Melloni, Lucia, Reichart, Roi, Devore, Sasha, Flinker, Adeen, Hasenfratz, Liat, Levy, Omer, Hassidim, Avinatan, Brenner, Michael, Matias, Yossi, Norman, Kenneth A., Devinsky, Orrin, Hasson, Uri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904253/
https://www.ncbi.nlm.nih.gov/pubmed/35260860
http://dx.doi.org/10.1038/s41593-022-01026-4
_version_ 1784664914908938240
author Goldstein, Ariel
Zada, Zaid
Buchnik, Eliav
Schain, Mariano
Price, Amy
Aubrey, Bobbi
Nastase, Samuel A.
Feder, Amir
Emanuel, Dotan
Cohen, Alon
Jansen, Aren
Gazula, Harshvardhan
Choe, Gina
Rao, Aditi
Kim, Catherine
Casto, Colton
Fanda, Lora
Doyle, Werner
Friedman, Daniel
Dugan, Patricia
Melloni, Lucia
Reichart, Roi
Devore, Sasha
Flinker, Adeen
Hasenfratz, Liat
Levy, Omer
Hassidim, Avinatan
Brenner, Michael
Matias, Yossi
Norman, Kenneth A.
Devinsky, Orrin
Hasson, Uri
author_facet Goldstein, Ariel
Zada, Zaid
Buchnik, Eliav
Schain, Mariano
Price, Amy
Aubrey, Bobbi
Nastase, Samuel A.
Feder, Amir
Emanuel, Dotan
Cohen, Alon
Jansen, Aren
Gazula, Harshvardhan
Choe, Gina
Rao, Aditi
Kim, Catherine
Casto, Colton
Fanda, Lora
Doyle, Werner
Friedman, Daniel
Dugan, Patricia
Melloni, Lucia
Reichart, Roi
Devore, Sasha
Flinker, Adeen
Hasenfratz, Liat
Levy, Omer
Hassidim, Avinatan
Brenner, Michael
Matias, Yossi
Norman, Kenneth A.
Devinsky, Orrin
Hasson, Uri
author_sort Goldstein, Ariel
collection PubMed
description Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language.
format Online
Article
Text
id pubmed-8904253
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-89042532022-03-23 Shared computational principles for language processing in humans and deep language models Goldstein, Ariel Zada, Zaid Buchnik, Eliav Schain, Mariano Price, Amy Aubrey, Bobbi Nastase, Samuel A. Feder, Amir Emanuel, Dotan Cohen, Alon Jansen, Aren Gazula, Harshvardhan Choe, Gina Rao, Aditi Kim, Catherine Casto, Colton Fanda, Lora Doyle, Werner Friedman, Daniel Dugan, Patricia Melloni, Lucia Reichart, Roi Devore, Sasha Flinker, Adeen Hasenfratz, Liat Levy, Omer Hassidim, Avinatan Brenner, Michael Matias, Yossi Norman, Kenneth A. Devinsky, Orrin Hasson, Uri Nat Neurosci Article Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language. Nature Publishing Group US 2022-03-07 2022 /pmc/articles/PMC8904253/ /pubmed/35260860 http://dx.doi.org/10.1038/s41593-022-01026-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Goldstein, Ariel
Zada, Zaid
Buchnik, Eliav
Schain, Mariano
Price, Amy
Aubrey, Bobbi
Nastase, Samuel A.
Feder, Amir
Emanuel, Dotan
Cohen, Alon
Jansen, Aren
Gazula, Harshvardhan
Choe, Gina
Rao, Aditi
Kim, Catherine
Casto, Colton
Fanda, Lora
Doyle, Werner
Friedman, Daniel
Dugan, Patricia
Melloni, Lucia
Reichart, Roi
Devore, Sasha
Flinker, Adeen
Hasenfratz, Liat
Levy, Omer
Hassidim, Avinatan
Brenner, Michael
Matias, Yossi
Norman, Kenneth A.
Devinsky, Orrin
Hasson, Uri
Shared computational principles for language processing in humans and deep language models
title Shared computational principles for language processing in humans and deep language models
title_full Shared computational principles for language processing in humans and deep language models
title_fullStr Shared computational principles for language processing in humans and deep language models
title_full_unstemmed Shared computational principles for language processing in humans and deep language models
title_short Shared computational principles for language processing in humans and deep language models
title_sort shared computational principles for language processing in humans and deep language models
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904253/
https://www.ncbi.nlm.nih.gov/pubmed/35260860
http://dx.doi.org/10.1038/s41593-022-01026-4
work_keys_str_mv AT goldsteinariel sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT zadazaid sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT buchnikeliav sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT schainmariano sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT priceamy sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT aubreybobbi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT nastasesamuela sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT federamir sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT emanueldotan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT cohenalon sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT jansenaren sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT gazulaharshvardhan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT choegina sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT raoaditi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT kimcatherine sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT castocolton sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT fandalora sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT doylewerner sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT friedmandaniel sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT duganpatricia sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT mellonilucia sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT reichartroi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT devoresasha sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT flinkeradeen sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT hasenfratzliat sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT levyomer sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT hassidimavinatan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT brennermichael sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT matiasyossi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT normankennetha sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT devinskyorrin sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels
AT hassonuri sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels