Cargando…
Shared computational principles for language processing in humans and deep language models
Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904253/ https://www.ncbi.nlm.nih.gov/pubmed/35260860 http://dx.doi.org/10.1038/s41593-022-01026-4 |
_version_ | 1784664914908938240 |
---|---|
author | Goldstein, Ariel Zada, Zaid Buchnik, Eliav Schain, Mariano Price, Amy Aubrey, Bobbi Nastase, Samuel A. Feder, Amir Emanuel, Dotan Cohen, Alon Jansen, Aren Gazula, Harshvardhan Choe, Gina Rao, Aditi Kim, Catherine Casto, Colton Fanda, Lora Doyle, Werner Friedman, Daniel Dugan, Patricia Melloni, Lucia Reichart, Roi Devore, Sasha Flinker, Adeen Hasenfratz, Liat Levy, Omer Hassidim, Avinatan Brenner, Michael Matias, Yossi Norman, Kenneth A. Devinsky, Orrin Hasson, Uri |
author_facet | Goldstein, Ariel Zada, Zaid Buchnik, Eliav Schain, Mariano Price, Amy Aubrey, Bobbi Nastase, Samuel A. Feder, Amir Emanuel, Dotan Cohen, Alon Jansen, Aren Gazula, Harshvardhan Choe, Gina Rao, Aditi Kim, Catherine Casto, Colton Fanda, Lora Doyle, Werner Friedman, Daniel Dugan, Patricia Melloni, Lucia Reichart, Roi Devore, Sasha Flinker, Adeen Hasenfratz, Liat Levy, Omer Hassidim, Avinatan Brenner, Michael Matias, Yossi Norman, Kenneth A. Devinsky, Orrin Hasson, Uri |
author_sort | Goldstein, Ariel |
collection | PubMed |
description | Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language. |
format | Online Article Text |
id | pubmed-8904253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-89042532022-03-23 Shared computational principles for language processing in humans and deep language models Goldstein, Ariel Zada, Zaid Buchnik, Eliav Schain, Mariano Price, Amy Aubrey, Bobbi Nastase, Samuel A. Feder, Amir Emanuel, Dotan Cohen, Alon Jansen, Aren Gazula, Harshvardhan Choe, Gina Rao, Aditi Kim, Catherine Casto, Colton Fanda, Lora Doyle, Werner Friedman, Daniel Dugan, Patricia Melloni, Lucia Reichart, Roi Devore, Sasha Flinker, Adeen Hasenfratz, Liat Levy, Omer Hassidim, Avinatan Brenner, Michael Matias, Yossi Norman, Kenneth A. Devinsky, Orrin Hasson, Uri Nat Neurosci Article Departing from traditional linguistic models, advances in deep learning have resulted in a new type of predictive (autoregressive) deep language models (DLMs). Using a self-supervised next-word prediction task, these models generate appropriate linguistic responses in a given context. In the current study, nine participants listened to a 30-min podcast while their brain responses were recorded using electrocorticography (ECoG). We provide empirical evidence that the human brain and autoregressive DLMs share three fundamental computational principles as they process the same natural narrative: (1) both are engaged in continuous next-word prediction before word onset; (2) both match their pre-onset predictions to the incoming word to calculate post-onset surprise; (3) both rely on contextual embeddings to represent words in natural contexts. Together, our findings suggest that autoregressive DLMs provide a new and biologically feasible computational framework for studying the neural basis of language. Nature Publishing Group US 2022-03-07 2022 /pmc/articles/PMC8904253/ /pubmed/35260860 http://dx.doi.org/10.1038/s41593-022-01026-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Goldstein, Ariel Zada, Zaid Buchnik, Eliav Schain, Mariano Price, Amy Aubrey, Bobbi Nastase, Samuel A. Feder, Amir Emanuel, Dotan Cohen, Alon Jansen, Aren Gazula, Harshvardhan Choe, Gina Rao, Aditi Kim, Catherine Casto, Colton Fanda, Lora Doyle, Werner Friedman, Daniel Dugan, Patricia Melloni, Lucia Reichart, Roi Devore, Sasha Flinker, Adeen Hasenfratz, Liat Levy, Omer Hassidim, Avinatan Brenner, Michael Matias, Yossi Norman, Kenneth A. Devinsky, Orrin Hasson, Uri Shared computational principles for language processing in humans and deep language models |
title | Shared computational principles for language processing in humans and deep language models |
title_full | Shared computational principles for language processing in humans and deep language models |
title_fullStr | Shared computational principles for language processing in humans and deep language models |
title_full_unstemmed | Shared computational principles for language processing in humans and deep language models |
title_short | Shared computational principles for language processing in humans and deep language models |
title_sort | shared computational principles for language processing in humans and deep language models |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904253/ https://www.ncbi.nlm.nih.gov/pubmed/35260860 http://dx.doi.org/10.1038/s41593-022-01026-4 |
work_keys_str_mv | AT goldsteinariel sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT zadazaid sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT buchnikeliav sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT schainmariano sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT priceamy sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT aubreybobbi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT nastasesamuela sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT federamir sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT emanueldotan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT cohenalon sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT jansenaren sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT gazulaharshvardhan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT choegina sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT raoaditi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT kimcatherine sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT castocolton sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT fandalora sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT doylewerner sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT friedmandaniel sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT duganpatricia sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT mellonilucia sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT reichartroi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT devoresasha sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT flinkeradeen sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT hasenfratzliat sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT levyomer sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT hassidimavinatan sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT brennermichael sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT matiasyossi sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT normankennetha sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT devinskyorrin sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels AT hassonuri sharedcomputationalprinciplesforlanguageprocessinginhumansanddeeplanguagemodels |