Cargando…

Persistent organic pollutants in pregnant women potentially affect child development and thyroid hormone status

BACKGROUND: Potentially harmful effects of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) on prenatal development and the endocrine system have been controversially discussed. METHODS: Working with a German cohort of 324 pregna...

Descripción completa

Detalles Bibliográficos
Autores principales: Krönke, Anna A., Jurkutat, Anne, Schlingmann, Maike, Poulain, Tanja, Nüchter, Matthias, Hilbert, Anja, Kiviranta, Hannu, Körner, Antje, Vogel, Mandy, Söder, Olle, Bornehag, Carl G., Kiess, Wieland
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group US 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904258/
https://www.ncbi.nlm.nih.gov/pubmed/33824444
http://dx.doi.org/10.1038/s41390-021-01488-5
Descripción
Sumario:BACKGROUND: Potentially harmful effects of persistent organic pollutants (POPs) such as polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT) on prenatal development and the endocrine system have been controversially discussed. METHODS: Working with a German cohort of 324 pregnant women, we assessed POP levels and used robust linear regression models to determine potential associations between maternal POP concentrations and pre- and postnatal development in the children, as well as the thyroid hormone status of the mother and child. RESULTS: Maternal p,p′-dichlorodiphenyldichloroethylene (p,p′-DDE) and most measured PCBs positively correlated with postnatal weight gain. We detected no correlation between newborn birth weight and head circumference, respectively, and maternal PCB and p,p′-DDE serum levels, while body length at birth was negatively associated with the maternal serum concentration of PCB 183. Maternal p,p′-DDE and nearly all PCB serum levels showed a negative correlation with maternal free triiodothyronine (FT3). p,p′-DDE and PCB 74 and 118 were negatively associated with maternal thyroid-stimulating hormone levels. In addition, we identified significant associations between maternal POP levels and thyroid hormone parameters of the child. CONCLUSIONS: These results indicate that POP exposure likely affects different aspects of pre- and postnatal development and impacts the thyroid hormone status of both mother and child. IMPACT: Pregnant women in a German cohort display a substantial accumulation of POPs. Body mass index and age influence maternal serum POP levels. Maternal POP levels show correlations with the child’s length at birth and weight gain, and FT3 levels in the mother and child. Our data provide additional evidence for the potentially harmful influence of POPs. Our data indicate that POPs influence pre- and postnatal development.