Cargando…
Repertoire analyses reveal T cell receptor sequence features that influence T cell fate
T cells acquire a regulatory phenotype when their T cell receptors (TCRs) experience an intermediate-to-high affinity interaction with a self-peptide presented via the major histocompatibility complex (MHC). Using TCRβ sequences from flow-sorted human cells, we identified TCR features that promote r...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904286/ https://www.ncbi.nlm.nih.gov/pubmed/35177831 http://dx.doi.org/10.1038/s41590-022-01129-x |
Sumario: | T cells acquire a regulatory phenotype when their T cell receptors (TCRs) experience an intermediate-to-high affinity interaction with a self-peptide presented via the major histocompatibility complex (MHC). Using TCRβ sequences from flow-sorted human cells, we identified TCR features that promote regulatory T cell (T(reg)) fate. From these results, we developed a scoring system to quantify TCR-intrinsic regulatory potential (TiRP). When applied to the tumor microenvironment, TiRP scoring helped to explain why only some T cell clones maintained the T(conv) phenotype through expansion. To elucidate drivers of these predictive TCR features, we then examined the two elements of the T(reg) TCR ligand separately: the self-peptide, and the human MHC II molecule. These analyses revealed that hydrophobicity in the third complementarity determining region (CDR3β) of the TCR promotes reactivity to self-peptides, while TCR variable gene (TRBV gene) usage shapes the TCR’s general propensity for human MHC II-restricted activation. |
---|