Cargando…
Structural and immunoendocrine remodeling in gut, pancreas and thymus in weaning rats fed powdered milk diets rich in Maillard reactants
Western diet is extending worldwide and suspected to be associated with various metabolic diseases. Many food products have skim milk powder added to it and, during processing, lactose reacts with milk proteins and Maillard reaction products (MRPs) are formed. Dietary MRPs are suggested risk factors...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904556/ https://www.ncbi.nlm.nih.gov/pubmed/35260716 http://dx.doi.org/10.1038/s41598-022-08001-w |
Sumario: | Western diet is extending worldwide and suspected to be associated with various metabolic diseases. Many food products have skim milk powder added to it and, during processing, lactose reacts with milk proteins and Maillard reaction products (MRPs) are formed. Dietary MRPs are suggested risk factors for metabolic dysregulation, but the mechanisms behind are still enigmatic. Here we describe that weaning rats fed diets rich in MRPs are affected in both their immune and endocrine systems. Marked structural changes in pancreas, intestine and thymus are noted already after 1 week of exposure. The pancreatic islets become sparser, the intestinal mucosa is thinner, and thymus displays increased apoptosis and atrophy. Glucagon- like peptide-1 (GLP-1) seems to play a key role in that the number of GLP-1 expressing cells is up-regulated in endocrine pancreas but down-regulated in the intestinal mucosa. Further, intestinal GLP-1-immunoreactive cells are juxta positioned not only to nerve fibres and tuft cells, as previously described, but also to intraepithelial CD3 positive T cells, rendering them a strategic location in metabolic regulation. Our results suggest dietary MRPs to cause metabolic disorders, dysregulation of intestinal GLP-1- immunoreactive cells, arrest in pancreas development and thymus atrophy. |
---|