Cargando…

A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations

Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health record (EHR) data. Using EHR data (April 2020–March 2021) at the Yale-New Haven Health System and the three hospital systems of the Mayo Clinic, computable phenotype definitio...

Descripción completa

Detalles Bibliográficos
Autores principales: Khera, Rohan, Mortazavi, Bobak J., Sangha, Veer, Warner, Frederick, Patrick Young, H., Ross, Joseph S., Shah, Nilay D., Theel, Elitza S., Jenkinson, William G., Knepper, Camille, Wang, Karen, Peaper, David, Martinello, Richard A., Brandt, Cynthia A., Lin, Zhenqiu, Ko, Albert I., Krumholz, Harlan M., Pollock, Benjamin D., Schulz, Wade L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904579/
https://www.ncbi.nlm.nih.gov/pubmed/35260762
http://dx.doi.org/10.1038/s41746-022-00570-4
_version_ 1784664984334106624
author Khera, Rohan
Mortazavi, Bobak J.
Sangha, Veer
Warner, Frederick
Patrick Young, H.
Ross, Joseph S.
Shah, Nilay D.
Theel, Elitza S.
Jenkinson, William G.
Knepper, Camille
Wang, Karen
Peaper, David
Martinello, Richard A.
Brandt, Cynthia A.
Lin, Zhenqiu
Ko, Albert I.
Krumholz, Harlan M.
Pollock, Benjamin D.
Schulz, Wade L.
author_facet Khera, Rohan
Mortazavi, Bobak J.
Sangha, Veer
Warner, Frederick
Patrick Young, H.
Ross, Joseph S.
Shah, Nilay D.
Theel, Elitza S.
Jenkinson, William G.
Knepper, Camille
Wang, Karen
Peaper, David
Martinello, Richard A.
Brandt, Cynthia A.
Lin, Zhenqiu
Ko, Albert I.
Krumholz, Harlan M.
Pollock, Benjamin D.
Schulz, Wade L.
author_sort Khera, Rohan
collection PubMed
description Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health record (EHR) data. Using EHR data (April 2020–March 2021) at the Yale-New Haven Health System and the three hospital systems of the Mayo Clinic, computable phenotype definitions based on ICD-10 diagnosis of COVID-19 (U07.1) were evaluated against positive SARS-CoV-2 PCR or antigen tests. We included 69,423 patients at Yale and 75,748 at Mayo Clinic with either a diagnosis code or a positive SARS-CoV-2 test. The precision and recall of a COVID-19 diagnosis for a positive test were 68.8% and 83.3%, respectively, at Yale, with higher precision (95%) and lower recall (63.5%) at Mayo Clinic, varying between 59.2% in Rochester to 97.3% in Arizona. For hospitalizations with a principal COVID-19 diagnosis, 94.8% at Yale and 80.5% at Mayo Clinic had an associated positive laboratory test, with secondary diagnosis of COVID-19 identifying additional patients. These patients had a twofold higher inhospital mortality than based on principal diagnosis. Standardization of coding practices is needed before the use of diagnosis codes in clinical research and epidemiological surveillance of COVID-19.
format Online
Article
Text
id pubmed-8904579
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-89045792022-03-23 A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations Khera, Rohan Mortazavi, Bobak J. Sangha, Veer Warner, Frederick Patrick Young, H. Ross, Joseph S. Shah, Nilay D. Theel, Elitza S. Jenkinson, William G. Knepper, Camille Wang, Karen Peaper, David Martinello, Richard A. Brandt, Cynthia A. Lin, Zhenqiu Ko, Albert I. Krumholz, Harlan M. Pollock, Benjamin D. Schulz, Wade L. NPJ Digit Med Article Diagnosis codes are used to study SARS-CoV2 infections and COVID-19 hospitalizations in administrative and electronic health record (EHR) data. Using EHR data (April 2020–March 2021) at the Yale-New Haven Health System and the three hospital systems of the Mayo Clinic, computable phenotype definitions based on ICD-10 diagnosis of COVID-19 (U07.1) were evaluated against positive SARS-CoV-2 PCR or antigen tests. We included 69,423 patients at Yale and 75,748 at Mayo Clinic with either a diagnosis code or a positive SARS-CoV-2 test. The precision and recall of a COVID-19 diagnosis for a positive test were 68.8% and 83.3%, respectively, at Yale, with higher precision (95%) and lower recall (63.5%) at Mayo Clinic, varying between 59.2% in Rochester to 97.3% in Arizona. For hospitalizations with a principal COVID-19 diagnosis, 94.8% at Yale and 80.5% at Mayo Clinic had an associated positive laboratory test, with secondary diagnosis of COVID-19 identifying additional patients. These patients had a twofold higher inhospital mortality than based on principal diagnosis. Standardization of coding practices is needed before the use of diagnosis codes in clinical research and epidemiological surveillance of COVID-19. Nature Publishing Group UK 2022-03-08 /pmc/articles/PMC8904579/ /pubmed/35260762 http://dx.doi.org/10.1038/s41746-022-00570-4 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Khera, Rohan
Mortazavi, Bobak J.
Sangha, Veer
Warner, Frederick
Patrick Young, H.
Ross, Joseph S.
Shah, Nilay D.
Theel, Elitza S.
Jenkinson, William G.
Knepper, Camille
Wang, Karen
Peaper, David
Martinello, Richard A.
Brandt, Cynthia A.
Lin, Zhenqiu
Ko, Albert I.
Krumholz, Harlan M.
Pollock, Benjamin D.
Schulz, Wade L.
A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title_full A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title_fullStr A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title_full_unstemmed A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title_short A multicenter evaluation of computable phenotyping approaches for SARS-CoV-2 infection and COVID-19 hospitalizations
title_sort multicenter evaluation of computable phenotyping approaches for sars-cov-2 infection and covid-19 hospitalizations
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904579/
https://www.ncbi.nlm.nih.gov/pubmed/35260762
http://dx.doi.org/10.1038/s41746-022-00570-4
work_keys_str_mv AT kherarohan amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT mortazavibobakj amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT sanghaveer amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT warnerfrederick amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT patrickyoungh amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT rossjosephs amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT shahnilayd amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT theelelitzas amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT jenkinsonwilliamg amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT kneppercamille amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT wangkaren amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT peaperdavid amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT martinelloricharda amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT brandtcynthiaa amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT linzhenqiu amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT koalberti amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT krumholzharlanm amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT pollockbenjamind amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT schulzwadel amulticenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT kherarohan multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT mortazavibobakj multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT sanghaveer multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT warnerfrederick multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT patrickyoungh multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT rossjosephs multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT shahnilayd multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT theelelitzas multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT jenkinsonwilliamg multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT kneppercamille multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT wangkaren multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT peaperdavid multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT martinelloricharda multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT brandtcynthiaa multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT linzhenqiu multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT koalberti multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT krumholzharlanm multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT pollockbenjamind multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations
AT schulzwadel multicenterevaluationofcomputablephenotypingapproachesforsarscov2infectionandcovid19hospitalizations