Cargando…
Identifying key differences between linear stochastic estimation and neural networks for fluid flow regressions
Neural networks (NNs) and linear stochastic estimation (LSE) have widely been utilized as powerful tools for fluid-flow regressions. We investigate fundamental differences between them considering two canonical fluid-flow problems: (1) the estimation of high-order proper orthogonal decomposition coe...
Autores principales: | Nakamura, Taichi, Fukami, Kai, Fukagata, Koji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904624/ https://www.ncbi.nlm.nih.gov/pubmed/35260621 http://dx.doi.org/10.1038/s41598-022-07515-7 |
Ejemplares similares
-
A Stochastic Restricted Principal Components Regression Estimator in the Linear Model
por: He, Daojiang, et al.
Publicado: (2014) -
Linear estimation and stochastic control
por: Davis, M H A
Publicado: (1977) -
Stochastic optimal linear estimation and control
por: Meditch, James S
Publicado: (1969) -
On Data-Driven Sparse Sensing and Linear Estimation of Fluid Flows
por: Jayaraman, Balaji, et al.
Publicado: (2020) -
Data on estimation for sodium absorption ratio: Using artificial neural network and multiple linear regressions
por: Radfard, Majid, et al.
Publicado: (2018)