Cargando…
Machine learning potential for interacting dislocations in the presence of free surfaces
Computing the total energy of a system of N interacting dislocations in the presence of arbitrary free surfaces is a difficult task, requiring Finite Element (FE) numerical calculations. Worst, high accuracy requires very fine meshes in the proximity of each dislocation core. Here we show that FE ca...
Autores principales: | Lanzoni, Daniele, Rovaris, Fabrizio, Montalenti, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8904841/ https://www.ncbi.nlm.nih.gov/pubmed/35260604 http://dx.doi.org/10.1038/s41598-022-07585-7 |
Ejemplares similares
-
Author Correction: Machine learning potential for interacting dislocations in the presence of free surfaces
por: Lanzoni, Daniele, et al.
Publicado: (2023) -
Atomic-scale insights on the formation of ordered arrays of edge dislocations in Ge/Si(001) films via molecular dynamics simulations
por: Barbisan, Luca, et al.
Publicado: (2022) -
Structure and Stability of Partial Dislocation Complexes in 3C-SiC by Molecular Dynamics Simulations
por: Sarikov, Andrey, et al.
Publicado: (2019) -
Morphological Evolution of Pit-Patterned Si(001) Substrates Driven by Surface-Energy Reduction
por: Salvalaglio, Marco, et al.
Publicado: (2017) -
Machine-Learned Free Energy Surfaces for Capillary Condensation and Evaporation in Mesopores
por: Desgranges, Caroline, et al.
Publicado: (2022)