Cargando…
Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem
Declines in pollinating insects and wildflowers have been well documented in recent years. Climate change is an emerging threat to insect pollinators and their food plants, but little is known about how whole communities of interacting species will be affected or what impacts there may be on ecosyst...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905351/ https://www.ncbi.nlm.nih.gov/pubmed/35283885 http://dx.doi.org/10.3389/fpls.2022.826205 |
_version_ | 1784665167019114496 |
---|---|
author | Moss, Ellen D. Evans, Darren M. |
author_facet | Moss, Ellen D. Evans, Darren M. |
author_sort | Moss, Ellen D. |
collection | PubMed |
description | Declines in pollinating insects and wildflowers have been well documented in recent years. Climate change is an emerging threat to insect pollinators and their food plants, but little is known about how whole communities of interacting species will be affected or what impacts there may be on ecosystem services such as pollination. Using a novel open-air field experiment, we simulated an increase in temperature of 1.5°C and rainwater of 40% for two growing seasons to investigate how climate change may impact several within-field features of temperate arable agro-ecosystems: (1) wildflower floral resources; (2) insect visitation; (3) flower-visitor network structure; and (4) wildflower seed set. Experimental warming reduced total floral abundance by nearly 40%, and nectar volumes by over 60% for two species. The species richness of the visiting insects and flowering plants (dominated by annuals) were unaffected by warming, and while a negative impact on visitor abundance was observed, this effect appears to have been mediated by different community compositions between years. Warming increased the frequency of visits to flowers and the complexity of the flower-visitor interaction networks. Wildflower seed set was reduced in terms of seed number and/or weight in four of the five species examined. Increased rainwater did not ameliorate any of these effects. These findings demonstrate the adverse impacts that climate warming might have on annual wildflowers in arable systems and the pollinating insects that feed on them, highlighting several mechanisms that could drive changes in community composition over time. The results also reveal how cascading impacts within communities can accumulate to affect ecosystem functioning. |
format | Online Article Text |
id | pubmed-8905351 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89053512022-03-10 Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem Moss, Ellen D. Evans, Darren M. Front Plant Sci Plant Science Declines in pollinating insects and wildflowers have been well documented in recent years. Climate change is an emerging threat to insect pollinators and their food plants, but little is known about how whole communities of interacting species will be affected or what impacts there may be on ecosystem services such as pollination. Using a novel open-air field experiment, we simulated an increase in temperature of 1.5°C and rainwater of 40% for two growing seasons to investigate how climate change may impact several within-field features of temperate arable agro-ecosystems: (1) wildflower floral resources; (2) insect visitation; (3) flower-visitor network structure; and (4) wildflower seed set. Experimental warming reduced total floral abundance by nearly 40%, and nectar volumes by over 60% for two species. The species richness of the visiting insects and flowering plants (dominated by annuals) were unaffected by warming, and while a negative impact on visitor abundance was observed, this effect appears to have been mediated by different community compositions between years. Warming increased the frequency of visits to flowers and the complexity of the flower-visitor interaction networks. Wildflower seed set was reduced in terms of seed number and/or weight in four of the five species examined. Increased rainwater did not ameliorate any of these effects. These findings demonstrate the adverse impacts that climate warming might have on annual wildflowers in arable systems and the pollinating insects that feed on them, highlighting several mechanisms that could drive changes in community composition over time. The results also reveal how cascading impacts within communities can accumulate to affect ecosystem functioning. Frontiers Media S.A. 2022-02-23 /pmc/articles/PMC8905351/ /pubmed/35283885 http://dx.doi.org/10.3389/fpls.2022.826205 Text en Copyright © 2022 Moss and Evans. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Plant Science Moss, Ellen D. Evans, Darren M. Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title | Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title_full | Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title_fullStr | Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title_full_unstemmed | Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title_short | Experimental Climate Warming Reduces Floral Resources and Alters Insect Visitation and Wildflower Seed Set in a Cereal Agro-Ecosystem |
title_sort | experimental climate warming reduces floral resources and alters insect visitation and wildflower seed set in a cereal agro-ecosystem |
topic | Plant Science |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905351/ https://www.ncbi.nlm.nih.gov/pubmed/35283885 http://dx.doi.org/10.3389/fpls.2022.826205 |
work_keys_str_mv | AT mossellend experimentalclimatewarmingreducesfloralresourcesandaltersinsectvisitationandwildflowerseedsetinacerealagroecosystem AT evansdarrenm experimentalclimatewarmingreducesfloralresourcesandaltersinsectvisitationandwildflowerseedsetinacerealagroecosystem |