Cargando…
MODIT: MOtif DIscovery in Temporal Networks
Temporal networks are graphs where each edge is linked with a timestamp, denoting when an interaction between two nodes happens. According to the most recently proposed definitions of the problem, motif search in temporal networks consists in finding and counting all connected temporal graphs Q (cal...
Autores principales: | Grasso, Roberto, Micale, Giovanni, Ferro, Alfredo, Pulvirenti, Alfredo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905430/ https://www.ncbi.nlm.nih.gov/pubmed/35281988 http://dx.doi.org/10.3389/fdata.2021.806014 |
Ejemplares similares
-
Temporal Mobility Networks in Online Gaming
por: Alhazmi, Essa, et al.
Publicado: (2019) -
TSI-GNN: Extending Graph Neural Networks to Handle Missing Data in Temporal Settings
por: Gordon, David, et al.
Publicado: (2021) -
Data-Driven Computational Social Network Science: Predictive and Inferential Models for Web-Enabled Scientific Discoveries
por: Emmert-Streib, Frank, et al.
Publicado: (2021) -
Data-Driven Modeling of Breast Cancer Tumors Using Boolean Networks
por: Sgariglia, Domenico, et al.
Publicado: (2021) -
Correlation-Based Discovery of Disease Patterns for Syndromic Surveillance
por: Rapp, Michael, et al.
Publicado: (2022)