Cargando…
A Systematic Evaluation of Supervised Machine Learning Algorithms for Cell Phenotype Classification Using Single-Cell RNA Sequencing Data
The new technology of single-cell RNA sequencing (scRNA-seq) can yield valuable insights into gene expression and give critical information about the cellular compositions of complex tissues. In recent years, vast numbers of scRNA-seq datasets have been generated and made publicly available, and thi...
Autores principales: | Cao, Xiaowen, Xing, Li, Majd, Elham, He, Hua, Gu, Junhua, Zhang, Xuekui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905542/ https://www.ncbi.nlm.nih.gov/pubmed/35281805 http://dx.doi.org/10.3389/fgene.2022.836798 |
Ejemplares similares
-
Diabetic retinopathy classification for supervised machine learning algorithms
por: Nakayama, Luis Filipe, et al.
Publicado: (2022) -
Identification of biomarkers for hepatocellular carcinoma based on single cell sequencing and machine learning algorithms
por: Li, Weimin, et al.
Publicado: (2022) -
Deep learning methods may not outperform other machine learning methods on analyzing genomic studies
por: Dong, Yao, et al.
Publicado: (2022) -
LFSC: A linear fast semi-supervised clustering algorithm that integrates reference-bulk and single-cell transcriptomes
por: Liu, Qiaoming, et al.
Publicado: (2022) -
Protein Sequence Classification with Improved Extreme Learning Machine Algorithms
por: Cao, Jiuwen, et al.
Publicado: (2014)