Cargando…
Cross-Site Severity Assessment of COVID-19 From CT Images via Domain Adaptation
Early and accurate severity assessment of Coronavirus disease 2019 (COVID-19) based on computed tomography (CT) images offers a great help to the estimation of intensive care unit event and the clinical decision of treatment planning. To augment the labeled data and improve the generalization abilit...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905616/ https://www.ncbi.nlm.nih.gov/pubmed/34383647 http://dx.doi.org/10.1109/TMI.2021.3104474 |
Ejemplares similares
-
Cross-platform privacy-preserving CT image COVID-19 diagnosis based on source-free domain adaptation
por: Feng, Yuanyi, et al.
Publicado: (2023) -
Domain adaptation based self-correction model for COVID-19 infection segmentation in CT images
por: Jin, Qiangguo, et al.
Publicado: (2021) -
Chest CT Severity Score: An Imaging Tool for Assessing Severe COVID-19
por: Yang, Ran, et al.
Publicado: (2020) -
Unsupervised domain adaptation based COVID-19 CT infection segmentation network
por: Chen, Han, et al.
Publicado: (2021) -
A deep-learning-based framework for severity assessment of COVID-19 with CT images
por: Li, Zhidan, et al.
Publicado: (2021)