Cargando…

Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences

Breast cancer is highly prevalent and fatal worldwide. Currently, breast cancer classification is based on the presence of estrogen, progesterone, and human epidermal growth factor 2. Because cancer and metabolism are closely related, we established a breast cancer classification system based on the...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Ming, Sun, Chen
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905618/
https://www.ncbi.nlm.nih.gov/pubmed/35281118
http://dx.doi.org/10.3389/fcell.2022.829029
_version_ 1784665227643584512
author Bai, Ming
Sun, Chen
author_facet Bai, Ming
Sun, Chen
author_sort Bai, Ming
collection PubMed
description Breast cancer is highly prevalent and fatal worldwide. Currently, breast cancer classification is based on the presence of estrogen, progesterone, and human epidermal growth factor 2. Because cancer and metabolism are closely related, we established a breast cancer classification system based on the metabolic gene expression profile. We performed typing of metabolism-related genes using The Cancer Genome Atlas-Breast Cancer and 2010 (YAU). We included 2,752 metabolic genes reported in previous literature, and the genes were further identified according to statistically significant variance and univariate Cox analyses. These prognostic metabolic genes were used for non-negative matrix factorization (NMF) clustering. Then, we identified characteristic genes in each metabolic subtype using differential analysis. The top 30 characteristic genes in each subtype were selected for signature construction based on statistical parameters. We attempted to identify standard metabolic signatures that could be used for other cohorts for metabolic typing. Subsequently, to demonstrate the effectiveness of the 90 Signature, NTP and NMF dimensional-reduction clustering were used to analyze these results. The reliability of the 90 Signature was verified by comparing the results of the two-dimensionality reduction clusters. Finally, the submap method was used to determine that the C1 metabolic subtype group was sensitive to immunotherapy and more sensitive to the targeted drug sunitinib. This study provides a theoretical basis for diagnosing and treating breast cancer.
format Online
Article
Text
id pubmed-8905618
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-89056182022-03-10 Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences Bai, Ming Sun, Chen Front Cell Dev Biol Cell and Developmental Biology Breast cancer is highly prevalent and fatal worldwide. Currently, breast cancer classification is based on the presence of estrogen, progesterone, and human epidermal growth factor 2. Because cancer and metabolism are closely related, we established a breast cancer classification system based on the metabolic gene expression profile. We performed typing of metabolism-related genes using The Cancer Genome Atlas-Breast Cancer and 2010 (YAU). We included 2,752 metabolic genes reported in previous literature, and the genes were further identified according to statistically significant variance and univariate Cox analyses. These prognostic metabolic genes were used for non-negative matrix factorization (NMF) clustering. Then, we identified characteristic genes in each metabolic subtype using differential analysis. The top 30 characteristic genes in each subtype were selected for signature construction based on statistical parameters. We attempted to identify standard metabolic signatures that could be used for other cohorts for metabolic typing. Subsequently, to demonstrate the effectiveness of the 90 Signature, NTP and NMF dimensional-reduction clustering were used to analyze these results. The reliability of the 90 Signature was verified by comparing the results of the two-dimensionality reduction clusters. Finally, the submap method was used to determine that the C1 metabolic subtype group was sensitive to immunotherapy and more sensitive to the targeted drug sunitinib. This study provides a theoretical basis for diagnosing and treating breast cancer. Frontiers Media S.A. 2022-02-14 /pmc/articles/PMC8905618/ /pubmed/35281118 http://dx.doi.org/10.3389/fcell.2022.829029 Text en Copyright © 2022 Bai and Sun. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Cell and Developmental Biology
Bai, Ming
Sun, Chen
Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title_full Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title_fullStr Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title_full_unstemmed Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title_short Determination of Breast Metabolic Phenotypes and Their Associations With Immunotherapy and Drug-Targeted Therapy: Analysis of Single-Cell and Bulk Sequences
title_sort determination of breast metabolic phenotypes and their associations with immunotherapy and drug-targeted therapy: analysis of single-cell and bulk sequences
topic Cell and Developmental Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905618/
https://www.ncbi.nlm.nih.gov/pubmed/35281118
http://dx.doi.org/10.3389/fcell.2022.829029
work_keys_str_mv AT baiming determinationofbreastmetabolicphenotypesandtheirassociationswithimmunotherapyanddrugtargetedtherapyanalysisofsinglecellandbulksequences
AT sunchen determinationofbreastmetabolicphenotypesandtheirassociationswithimmunotherapyanddrugtargetedtherapyanalysisofsinglecellandbulksequences