Cargando…

Preoperative CT simulation of iliosacral screws for treating unstable posterior pelvic ring injury

BACKGROUND: The percutaneous iliosacral screw is a common procedure for treating pelvic posterior ring instability. Traditional X-ray fluoroscopy screw placement has the advantages of decreased bleeding and trauma, but it also has some drawbacks, such as increased radiation exposure and screw disloc...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Peishuai, Wang, Xiaopan, Chen, Xiaotian, Guan, Jianzhong, Wu, Min
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905748/
https://www.ncbi.nlm.nih.gov/pubmed/35260132
http://dx.doi.org/10.1186/s12891-022-05155-6
Descripción
Sumario:BACKGROUND: The percutaneous iliosacral screw is a common procedure for treating pelvic posterior ring instability. Traditional X-ray fluoroscopy screw placement has the advantages of decreased bleeding and trauma, but it also has some drawbacks, such as increased radiation exposure and screw dislocation. The purpose of this study was to establish a safe, effective, and quick approach for putting iliosacral screws for the treatment of unstable posterior pelvic ring damage utilizing simulated screws based on preoperative computed tomography (CT) planning. METHODS: From February 2019 to June 2020, we retrospectively assessed 41 patients with posterior pelvic ring instability who were treated with percutaneous iliosacral screws in our institution, and randomly separated them into two groups: conventional surgery (n = 20) and preoperative planning (n = 21). Pelvic radiographs (anteroposterior, inlet, outlet), as well as normal CT scans of the pelvis, were all taken postoperatively to confirm the screw position. After that, the screw insertion time, the radiation exposure time, and the screw misplacement rate (as assessed by postoperative CT) were all examined. Screw position grading was evaluated by Smith grading. RESULTS: In the conventional surgery group, 26 screws were inserted in 20 patients, with each screw insertion taking 23.15 ± 4.19 min and 1.02 ± 0.17 min to expose to radiation. Eight of the 26 screws were misplaced (30.8%). In the preoperative planning group, 24 screws were inserted in 21 patients, with each screw taking 19.57 ± 4.05 min to implant and 0.67 ± 0.09 min to expose to radiation. One of 24 screws was misplaced (4.2%). Screw insertion time, radiation exposure time, and screw dislocation rate were all significantly reduced when preoperative planning aided iliosacral screw placement (P < 0.05). CONCLUSIONS: Preoperative CT simulation of iliosacral screws for placement planning, screw trajectory, and intraoperative screw placement is a safe way for reducing surgical time, radiation exposure, and ensuring accurate screw placement.