Cargando…
Cervical disc prostheses need a variable center of rotation for flexion / extension below disc level, plus a separate COR for lateral bending above disc level to more closely replicate in-vivo motion: MRI-based biomechanical in-vivo study
BACKGROUND: Cervical disc prostheses are used to preserve motion after discectomy, but they should also provide a near-physiological qualitative motion pattern. Nevertheless, they come in many completely different biomechanical concepts. This caused us to perform an in-vivo MR-based biomechanical st...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905756/ https://www.ncbi.nlm.nih.gov/pubmed/35260131 http://dx.doi.org/10.1186/s12891-022-05121-2 |
Sumario: | BACKGROUND: Cervical disc prostheses are used to preserve motion after discectomy, but they should also provide a near-physiological qualitative motion pattern. Nevertheless, they come in many completely different biomechanical concepts. This caused us to perform an in-vivo MR-based biomechanical study to further investigate cervical spine motion with the aim to gain new information for improving the design of future cervical arthroplasty devices. METHODS: Fifteen healthy volunteers underwent MRI-investigation (in order to avoid radiation exposure) of their cervical spines from C3 to C7; for each segment centers of rotation (COR) for flexion / extension were determined from 5 different positions, and CORs for lateral bending from 3 different positions. The motion path of the COR is then described and illustrated in relation to the respective COR for maximum flexion / extension or lateral bending, respectively, and the findings are translated into implications for a better biomechanical prosthesis-design. RESULTS: The COR for flexion / extension does not remain constant during motion. The CORs for the respective motion intervals were always found at different positions than the COR for maximum flexion /extension showing that the COR moves both along the x- and the y-axis throughout flexion / extension. For lateral bending a completely independent COR was found above disc-level. CONCLUSION: Flexion / extension is not a simple circular motion. Disc prostheses need a variable COR for flexion / extension below disc level with the capability to move both along the x- and the y-axis during motion, plus a second completely independent COR for lateral bending above disc level to closely replicate in-vivo motion. These findings are important for improving the biomechanical design of such devices in the future. |
---|