Cargando…
A deep learning framework for automated detection and quantitative assessment of liver trauma
BACKGROUND: Both early detection and severity assessment of liver trauma are critical for optimal triage and management of trauma patients. Current trauma protocols utilize computed tomography (CT) assessment of injuries in a subjective and qualitative (v.s. quantitative) fashion, shortcomings which...
Autores principales: | Farzaneh, Negar, Stein, Erica B., Soroushmehr, Reza, Gryak, Jonathan, Najarian, Kayvan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905785/ https://www.ncbi.nlm.nih.gov/pubmed/35260105 http://dx.doi.org/10.1186/s12880-022-00759-9 |
Ejemplares similares
-
Automated Segmentation and Severity Analysis of Subdural Hematoma for Patients with Traumatic Brain Injuries
por: Farzaneh, Negar, et al.
Publicado: (2020) -
A hierarchical expert-guided machine learning framework for clinical decision support systems: an application to traumatic brain injury prognostication
por: Farzaneh, Negar, et al.
Publicado: (2021) -
Vessel segmentation for X-ray coronary angiography using ensemble methods with deep learning and filter-based features
por: Gao, Zijun, et al.
Publicado: (2022) -
Automated Spleen Injury Detection Using 3D Active Contours and Machine Learning
por: Wang, Julie, et al.
Publicado: (2021) -
Transforming big data into computational models for personalized medicine and health care
por: Reza Soroushmehr, S. M., et al.
Publicado: (2016)