Cargando…
Interpretable Temporal Attention Network for COVID-19 forecasting
The worldwide outbreak of coronavirus disease 2019 (COVID-19) has triggered an unprecedented global health and economic crisis. Early and accurate forecasts of COVID-19 and evaluation of government interventions are crucial for governments to take appropriate interventions to contain the spread of C...
Autores principales: | Zhou, Binggui, Yang, Guanghua, Shi, Zheng, Ma, Shaodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8905883/ https://www.ncbi.nlm.nih.gov/pubmed/35281183 http://dx.doi.org/10.1016/j.asoc.2022.108691 |
Ejemplares similares
-
Interpretable tourism demand forecasting with temporal fusion transformers amid COVID-19
por: Wu, Binrong, et al.
Publicado: (2022) -
Spatial–Temporal Synchronous Graph Transformer network (STSGT) for COVID-19 forecasting
por: Banerjee, Soumyanil, et al.
Publicado: (2022) -
IMF: Interpretable Multi-Hop Forecasting on Temporal Knowledge Graphs
por: Du, Zhenyu, et al.
Publicado: (2023) -
Convolutional neural networks and temporal CNNs for COVID-19 forecasting in France
por: Mohimont, Lucas, et al.
Publicado: (2021) -
General short-term load forecasting based on multi-task temporal convolutional network in COVID-19
por: Zhang, Zhenhao, et al.
Publicado: (2023)