Cargando…
Promastigotes of Leishmania donovani exhibited sensitivity towards the high altitudinal plant Cicer microphyllum
In this study, we explored Cicer microphyllum (CM), a Trans-Himalayan plant for its chemical components by GC-MS, phytochemical quantitation, and anti-leishmanial efficacy against sensitive strain (SS) and resistant strain (RS) promastigotes of L. donovani in vitro. The hydroethanolic extract of aer...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906067/ https://www.ncbi.nlm.nih.gov/pubmed/35284854 http://dx.doi.org/10.1016/j.crpvbd.2021.100040 |
Sumario: | In this study, we explored Cicer microphyllum (CM), a Trans-Himalayan plant for its chemical components by GC-MS, phytochemical quantitation, and anti-leishmanial efficacy against sensitive strain (SS) and resistant strain (RS) promastigotes of L. donovani in vitro. The hydroethanolic extract of aerial parts of CM was screened for the presence of chemical compounds and phytochemical estimation. The antileishmanial activity of CM was assessed against the promastigotes of L. donovani. The cell volume and cell viability were analyzed by flow cytometry. The generation of reactive oxygen species (ROS) and lipid bodies was determined after treatment with reference and test drug. The extract of CM is complemented with major plant secondary metabolites and the quantitative assessment for phytoconstituents showed the highest concentration of phenols followed by flavonoids and terpenoids. Different biologically active chemical compounds were identified by the GC-MS analysis. The 50% inhibitory concentrations against L. donovani sensitive strain were 14.40 μg/ml and 23.03 μg/ml whereas for resistant promastigotes these were 49.84 μg/ml and 26.77 μg/ml after SAG (sodium stibogluconate) and CM exposure, respectively. CM treatment reduced cell viability induced by loss in plasma membrane integrity. Drug treatment resulted in higher ROS generation and production of lipid bodies. GC-MS screening of the extract revealed the richness of active chemical components in CM. The presence of diverse phytochemicals, no cytotoxicity to human macrophages, and the antileishmanial action of CM depicted its potential as an alternative future drug. |
---|