Cargando…
Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa
Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) – the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in e...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906077/ https://www.ncbi.nlm.nih.gov/pubmed/35284856 http://dx.doi.org/10.1016/j.crpvbd.2021.100047 |
_version_ | 1784665328203071488 |
---|---|
author | Nash, Rebecca K. Lambert, Ben NʼGuessan, Raphael Ngufor, Corine Rowland, Mark Oxborough, Richard Moore, Sarah Tungu, Patrick Sherrard-Smith, Ellie Churcher, Thomas S. |
author_facet | Nash, Rebecca K. Lambert, Ben NʼGuessan, Raphael Ngufor, Corine Rowland, Mark Oxborough, Richard Moore, Sarah Tungu, Patrick Sherrard-Smith, Ellie Churcher, Thomas S. |
author_sort | Nash, Rebecca K. |
collection | PubMed |
description | Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) – the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools. |
format | Online Article Text |
id | pubmed-8906077 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-89060772022-03-10 Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa Nash, Rebecca K. Lambert, Ben NʼGuessan, Raphael Ngufor, Corine Rowland, Mark Oxborough, Richard Moore, Sarah Tungu, Patrick Sherrard-Smith, Ellie Churcher, Thomas S. Curr Res Parasitol Vector Borne Dis Review Article Resistance of anopheline mosquitoes to pyrethroid insecticides is spreading rapidly across sub-Saharan Africa, diminishing the efficacy of insecticide-treated nets (ITNs) – the primary tool for preventing malaria. The entomological efficacy of indoor vector control interventions can be measured in experimental hut trials (EHTs), where hut structures resemble local housing, but allow the collection of mosquitoes that entered, exited, blood-fed and/or died. There is a need to understand how the spread of resistance changes ITN efficacy and to elucidate factors influencing EHT results, including differences in experimental hut design, to support the development of novel vector control tools. A comprehensive database of EHTs was compiled following a systematic review to identify all known trials investigating ITNs or indoor residual spraying across sub-Saharan Africa. This analysis focuses on EHTs investigating ITNs and uses Bayesian statistical models to characterise the complex interaction between ITNs and mosquitoes, the between-study variability, and the impact of pyrethroid resistance. As resistance rises, the entomological efficacy of ITNs declines. They induce less mortality and are less likely to deter mosquitoes from entering huts. Despite this, ITNs continue to offer considerable personal protection by reducing mosquito feeding until resistance reaches high levels. There are clear associations between the different entomological impacts of ITNs, though there is still substantial variability between studies, some of which can be accounted for by hut design. The relationship between EHT outcomes and the level of resistance (as measured by discriminating dose bioassays) is highly uncertain. The meta-analyses show that EHTs are an important reproducible assay for capturing the complex entomological efficacy of ITNs on blood-feeding mosquitoes. The impact of pyrethroid resistance on these measures appears broadly consistent across a wide geographical area once hut design is accounted for, suggesting results can be extrapolated beyond the sites where the trials were conducted. Further work is needed to understand factors influencing EHT outcomes and how the relationship between outcomes and resistance varies when different methods are used to assess the level of resistance in wild mosquito populations. This will allow more precise estimates of the efficacy of these important vector control tools. Elsevier 2021-08-18 /pmc/articles/PMC8906077/ /pubmed/35284856 http://dx.doi.org/10.1016/j.crpvbd.2021.100047 Text en © 2021 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Review Article Nash, Rebecca K. Lambert, Ben NʼGuessan, Raphael Ngufor, Corine Rowland, Mark Oxborough, Richard Moore, Sarah Tungu, Patrick Sherrard-Smith, Ellie Churcher, Thomas S. Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title | Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title_full | Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title_fullStr | Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title_full_unstemmed | Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title_short | Systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in Africa |
title_sort | systematic review of the entomological impact of insecticide-treated nets evaluated using experimental hut trials in africa |
topic | Review Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906077/ https://www.ncbi.nlm.nih.gov/pubmed/35284856 http://dx.doi.org/10.1016/j.crpvbd.2021.100047 |
work_keys_str_mv | AT nashrebeccak systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT lambertben systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT nʼguessanraphael systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT nguforcorine systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT rowlandmark systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT oxboroughrichard systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT mooresarah systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT tungupatrick systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT sherrardsmithellie systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica AT churcherthomass systematicreviewoftheentomologicalimpactofinsecticidetreatednetsevaluatedusingexperimentalhuttrialsinafrica |