Cargando…
Deep learning-based automatic detection of tuberculosis disease in chest X-ray images
PURPOSE: To train a convolutional neural network (CNN) model from scratch to automatically detect tuberculosis (TB) from chest X-ray (CXR) images and compare its performance with transfer learning based technique of different pre-trained CNNs. MATERIAL AND METHODS: We used two publicly available dat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Termedia Publishing House
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906182/ https://www.ncbi.nlm.nih.gov/pubmed/35280947 http://dx.doi.org/10.5114/pjr.2022.113435 |
Sumario: | PURPOSE: To train a convolutional neural network (CNN) model from scratch to automatically detect tuberculosis (TB) from chest X-ray (CXR) images and compare its performance with transfer learning based technique of different pre-trained CNNs. MATERIAL AND METHODS: We used two publicly available datasets of postero-anterior chest radiographs, which are from Montgomery County, Maryland, and Shenzhen, China. A CNN (ConvNet) from scratch was trained to automatically detect TB on chest radiographs. Also, a CNN-based transfer learning approach using five different pre-trained models, including Inception_v3, Xception, ResNet50, VGG19, and VGG16 was utilized for classifying TB and normal cases from CXR images. The performance of models for testing datasets was evaluated using five performances metrics, including accuracy, sensitivity/recall, precision, area under curve (AUC), and F1-score. RESULTS: All proposed models provided an acceptable accuracy for two-class classification. Our proposed CNN architecture (i.e., ConvNet) achieved 88.0% precision, 87.0% sensitivity, 87.0% F1-score, 87.0% accuracy, and AUC of 87.0%, which was slightly less than the pre-trained models. Among all models, Exception, ResNet50, and VGG16 provided the highest classification performance of automated TB classification with precision, sensitivity, F1-score, and AUC of 91.0%, and 90.0% accuracy. CONCLUSIONS: Our study presents a transfer learning approach with deep CNNs to automatically classify TB and normal cases from the chest radiographs. The classification accuracy, precision, sensitivity, and F1-score for the detection of TB were found to be more than 87.0% for all models used in the study. Exception, ResNet50, and VGG16 models outperformed other deep CNN models for the datasets with image augmentation methods. |
---|