Cargando…
Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer
An in‐house hybrid deformable image registration (DIR) method, which combines free‐form deformation (FFD) and the viscous fluid registration method, is proposed. Its results on the planning computed tomography (CT) and the day 1 treatment cone‐beam CT (CBCT) image from 68 head and neck cancer patien...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906219/ https://www.ncbi.nlm.nih.gov/pubmed/35084081 http://dx.doi.org/10.1002/acm2.13540 |
_version_ | 1784665363115409408 |
---|---|
author | Jiang, Chunling Huang, Yuling Ding, Shenggou Gong, Xiaochang Yuan, Xingxing Wang, Shaobin Li, Jingao Zhang, Yun |
author_facet | Jiang, Chunling Huang, Yuling Ding, Shenggou Gong, Xiaochang Yuan, Xingxing Wang, Shaobin Li, Jingao Zhang, Yun |
author_sort | Jiang, Chunling |
collection | PubMed |
description | An in‐house hybrid deformable image registration (DIR) method, which combines free‐form deformation (FFD) and the viscous fluid registration method, is proposed. Its results on the planning computed tomography (CT) and the day 1 treatment cone‐beam CT (CBCT) image from 68 head and neck cancer patients are compared with the results of NiftyReg, which uses B‐spline FFD alone. Several similarity metrics, the target registration error (TRE) of annotated points, as well as the Dice similarity coefficient (DSC) and Hausdorff distance (HD) of the propagated organs at risk are employed to analyze their registration accuracy. According to quantitative analysis on mutual information, normalized cross‐correlation, and the absolute pixel value differences, the results of the proposed DIR are more similar to the CBCT images than the NiftyReg results. Smaller TRE of the annotated points is observed in the proposed method, and the overall mean TRE for the proposed method and NiftyReg was 2.34 and 2.98 mm, respectively (p < 0.001). The mean DSC in the larynx, spinal cord, oral cavity, mandible, and parotid given by the proposed method ranged from 0.78 to 0.91, significantly higher than the NiftyReg results (ranging from 0.77 to 0.90), and the HD was significantly lower compared to NiftyReg. Furthermore, the proposed method did not suffer from unrealistic deformations as the NiftyReg did in the visual evaluation. Meanwhile, the execution time of the proposed method was much higher than NiftyReg (96.98 ± 11.88 s vs. 4.60 ± 0.49 s). In conclusion, the in‐house hybrid method gave better accuracy and more stable performance than NiftyReg. |
format | Online Article Text |
id | pubmed-8906219 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89062192022-03-10 Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer Jiang, Chunling Huang, Yuling Ding, Shenggou Gong, Xiaochang Yuan, Xingxing Wang, Shaobin Li, Jingao Zhang, Yun J Appl Clin Med Phys Medical Imaging An in‐house hybrid deformable image registration (DIR) method, which combines free‐form deformation (FFD) and the viscous fluid registration method, is proposed. Its results on the planning computed tomography (CT) and the day 1 treatment cone‐beam CT (CBCT) image from 68 head and neck cancer patients are compared with the results of NiftyReg, which uses B‐spline FFD alone. Several similarity metrics, the target registration error (TRE) of annotated points, as well as the Dice similarity coefficient (DSC) and Hausdorff distance (HD) of the propagated organs at risk are employed to analyze their registration accuracy. According to quantitative analysis on mutual information, normalized cross‐correlation, and the absolute pixel value differences, the results of the proposed DIR are more similar to the CBCT images than the NiftyReg results. Smaller TRE of the annotated points is observed in the proposed method, and the overall mean TRE for the proposed method and NiftyReg was 2.34 and 2.98 mm, respectively (p < 0.001). The mean DSC in the larynx, spinal cord, oral cavity, mandible, and parotid given by the proposed method ranged from 0.78 to 0.91, significantly higher than the NiftyReg results (ranging from 0.77 to 0.90), and the HD was significantly lower compared to NiftyReg. Furthermore, the proposed method did not suffer from unrealistic deformations as the NiftyReg did in the visual evaluation. Meanwhile, the execution time of the proposed method was much higher than NiftyReg (96.98 ± 11.88 s vs. 4.60 ± 0.49 s). In conclusion, the in‐house hybrid method gave better accuracy and more stable performance than NiftyReg. John Wiley and Sons Inc. 2022-01-27 /pmc/articles/PMC8906219/ /pubmed/35084081 http://dx.doi.org/10.1002/acm2.13540 Text en © 2022 The Authors. Journal of Applied Clinical Medical Physics published by Wiley Periodicals, LLC on behalf of The American Association of Physicists in Medicine https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Medical Imaging Jiang, Chunling Huang, Yuling Ding, Shenggou Gong, Xiaochang Yuan, Xingxing Wang, Shaobin Li, Jingao Zhang, Yun Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title | Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title_full | Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title_fullStr | Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title_full_unstemmed | Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title_short | Comparison of an in‐house hybrid DIR method to NiftyReg on CBCT and CT images for head and neck cancer |
title_sort | comparison of an in‐house hybrid dir method to niftyreg on cbct and ct images for head and neck cancer |
topic | Medical Imaging |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906219/ https://www.ncbi.nlm.nih.gov/pubmed/35084081 http://dx.doi.org/10.1002/acm2.13540 |
work_keys_str_mv | AT jiangchunling comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT huangyuling comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT dingshenggou comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT gongxiaochang comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT yuanxingxing comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT wangshaobin comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT lijingao comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer AT zhangyun comparisonofaninhousehybriddirmethodtoniftyregoncbctandctimagesforheadandneckcancer |