Cargando…
Probabilistic Risk Assessment – The Keystone for the Future of Toxicology
Safety sciences must cope with uncertainty of models and results as well as information gaps. Acknowledging this uncertainty necessitates embracing probabilities and accepting the remaining risk. Every toxicological tool delivers only probable results. Traditionally, this is taken into account by us...
Autores principales: | Maertens, Alexandra, Golden, Emily, Luechtefeld, Thomas H., Hoffmann, Sebastian, Tsaioun, Katya, Hartung, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906258/ https://www.ncbi.nlm.nih.gov/pubmed/35034131 http://dx.doi.org/10.14573/altex.2201081 |
Ejemplares similares
-
Adaptation of the Systematic Review Framework to the Assessment of Toxicological Test Methods: Challenges and Lessons Learned With the Zebrafish Embryotoxicity Test
por: Stephens, Martin L, et al.
Publicado: (2019) -
Machine Learning of Toxicological Big Data Enables Read-Across Structure Activity Relationships (RASAR) Outperforming Animal Test Reproducibility
por: Luechtefeld, Thomas, et al.
Publicado: (2018) -
A primer on systematic reviews in toxicology
por: Hoffmann, Sebastian, et al.
Publicado: (2017) -
Functionally Enigmatic Genes in Cancer: Using TCGA Data to Map the Limitations of Annotations
por: Maertens, Alexandra, et al.
Publicado: (2020) -
Author Correction: Functionally Enigmatic Genes in Cancer: Using TCGA Data to Map the Limitations of Annotations
por: Maertens, Alexandra, et al.
Publicado: (2020)