Cargando…
Graphene and graphene oxide with anticancer applications: Challenges and future perspectives
Graphene‐based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potenti...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906468/ https://www.ncbi.nlm.nih.gov/pubmed/35281783 http://dx.doi.org/10.1002/mco2.118 |
_version_ | 1784665408857440256 |
---|---|
author | Shafiee, Ali Iravani, Siavash Varma, Rajender S. |
author_facet | Shafiee, Ali Iravani, Siavash Varma, Rajender S. |
author_sort | Shafiee, Ali |
collection | PubMed |
description | Graphene‐based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene‐ (G‐) and graphene oxide (GO)‐based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid‐phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G‐based materials. Additionally, important criteria such as biocompatibility, bio‐toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G‐based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor‐targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G‐based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G‐ and GO‐based nanosystems have been highlighted, and the recent advancements are deliberated. |
format | Online Article Text |
id | pubmed-8906468 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-89064682022-03-10 Graphene and graphene oxide with anticancer applications: Challenges and future perspectives Shafiee, Ali Iravani, Siavash Varma, Rajender S. MedComm (2020) Reviews Graphene‐based materials have shown immense pertinence for sensing/imaging, gene/drug delivery, cancer therapy/diagnosis, and tissue engineering/regenerative medicine. Indeed, the large surface area, ease of functionalization, high drug loading capacity, and reactive oxygen species induction potentials have rendered graphene‐ (G‐) and graphene oxide (GO)‐based (nano)structures promising candidates for cancer therapy applications. Various techniques namely liquid‐phase exfoliation, Hummer's method, chemical vapor deposition, chemically reduced GO, mechanical cleavage of graphite, arc discharge of graphite, and thermal fusion have been deployed for the production of G‐based materials. Additionally, important criteria such as biocompatibility, bio‐toxicity, dispersibility, immunological compatibility, and inflammatory reactions of G‐based structures need to be systematically assessed for additional clinical and biomedical appliances. Furthermore, surface properties (e.g., lateral dimension, charge, corona influence, surface structure, and oxygen content), concentration, detection strategies, and cell types are vital for anticancer activities of these structures. Notably, the efficient accumulation of anticancer drugs in tumor targets/tissues, controlled cellular uptake properties, tumor‐targeted drug release behavior, and selective toxicity toward the cells are crucial criteria that need to be met for developing future anticancer G‐based nanosystems. Herein, important challenges and future perspectives of cancer therapy using G‐ and GO‐based nanosystems have been highlighted, and the recent advancements are deliberated. John Wiley and Sons Inc. 2022-02-09 /pmc/articles/PMC8906468/ /pubmed/35281783 http://dx.doi.org/10.1002/mco2.118 Text en © 2022 The Authors. MedComm published by Sichuan International Medical Exchange & Promotion Association (SCIMEA) and John Wiley & Sons Australia, Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Shafiee, Ali Iravani, Siavash Varma, Rajender S. Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title | Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title_full | Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title_fullStr | Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title_full_unstemmed | Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title_short | Graphene and graphene oxide with anticancer applications: Challenges and future perspectives |
title_sort | graphene and graphene oxide with anticancer applications: challenges and future perspectives |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906468/ https://www.ncbi.nlm.nih.gov/pubmed/35281783 http://dx.doi.org/10.1002/mco2.118 |
work_keys_str_mv | AT shafieeali grapheneandgrapheneoxidewithanticancerapplicationschallengesandfutureperspectives AT iravanisiavash grapheneandgrapheneoxidewithanticancerapplicationschallengesandfutureperspectives AT varmarajenders grapheneandgrapheneoxidewithanticancerapplicationschallengesandfutureperspectives |