Cargando…

Signal-Induced Inhibition of Telomerase Activity in HL60 Cancer Cells by Signal Transduction Using the Biophysically Activated Regulative Molecule 31 (RM31): A Pilot Study

In this pilot study, we report the use of a novel, patented biophysical technology, which enables intranuclear access and cell nucleus stimulation, via the signal of the biophysically activated regulative molecule 31 (RM31). RM31 is the name of an isolated natural molecule found in the human body an...

Descripción completa

Detalles Bibliográficos
Autor principal: Klein, Claudia B
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8906504/
https://www.ncbi.nlm.nih.gov/pubmed/35281585
http://dx.doi.org/10.7759/cureus.22962
Descripción
Sumario:In this pilot study, we report the use of a novel, patented biophysical technology, which enables intranuclear access and cell nucleus stimulation, via the signal of the biophysically activated regulative molecule 31 (RM31). RM31 is the name of an isolated natural molecule found in the human body and is involved in many cellular mechanisms. We used a specific low electromagnetic field frequency to activate the RM31 molecule, which leads to specific signal transduction, to investigate the effect of telomerase activity in HL60 cancer cells. Our results revealed a dramatic inhibition in telomerase activity, a 99.5% decrease within 72 hours, with avoidance of subsequent reactivation, due to the simultaneous inhibition of human telomerase reverse transcriptase (hTERT).